Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term phosphodiesterase 5 inhibitor administration reduces inflammatory markers and heat-shock proteins in cavernous tissue of Zucker diabetic fatty rat (ZDF/fa/fa)

Abstract

Oxidative stress and nitrosative stress present in type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS) induce inflammatory response in diverse tissues including cavernous tissue (CT). Heat-shock proteins (HSPs) have an important role in modulating and repairing tissue injury, although their participation in CT in T2DM is unclear. Beyond the specific action of phosphodiesterase type 5 inhibitors (PDE5i) on erectile function, it has been proposed that chronic administration of these agents improves endothelial function and ameliorates fibrotic changes. The aim of this study was to determine in CT of Zucker Diabetic Fatty (ZDF) rat, an experimental model of T2DM and MS: (1) the degree of oxidative stress and nitrosative stress; (2) the magnitude of inflammatory markers such as tumor necrosis factor-α (TNFα) and interleukin 6 (IL6); (3) immunoexpression of HSP70 and HSP27; (4) how a long-term PDE5i administration may modify these variables. For 6 months, (1) untreated ZDF; (2) ZDF+Sildenafil (Sil) and (3) control Lean Zucker Rat (LZR) received no treatment, were studied. Penises were processed for functional 'in vitro' studies, oxidative and nitrosative stress evaluation and immunohistochemistry in CT using TNFα; IL6; nitrotyrosine, HSP70 and HSP27 antibodies. ZDF+Sil presented better relaxation in corporal strips versus untreated ZDF. Furthermore, ZDF+Sil presented less lipoperoxidation in CT versus untreated ZDF. The activity of antioxidant enzymes CuZn superoxide dismutase (CuZnSOD) and glutathione peroxidase (GPx) was also reduced in untreated ZDF in CT along with a decrease in glutathione versus untreated ZDF. Nitrotyrosine expression was increased in untreated-ZDF rats versus ZDF+Sil and LZR. TNFα and IL6 were decreased in CT in ZDF+Sil versus untreated ZDF. Additionally, the expression of HSP70 and HSP27 was reduced in CT in ZDF+Sil versus untreated ZDF. In conclusion, this study provides substantial evidence supporting a protective role of a long-term therapy with Sil on CT in a recognized animal model of T2DM and MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kannel WB, McGee DL . Diabetes and cardiovascular disease: the Framingham study. J Am Med Assoc 1979; 241: 2035–2038.

    Article  CAS  Google Scholar 

  2. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M . Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339: 229–234.

    Article  CAS  PubMed  Google Scholar 

  3. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV et al. Diabetes and cardiovascular disease: a statement for health professionals from the American Heart Association. Circulation 1999; 100: 1134–1146.

    Article  CAS  PubMed  Google Scholar 

  4. Schachinger V, Britten MB, Zeiher AM . Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101: 1899–06.

    Article  CAS  PubMed  Google Scholar 

  5. Yasmin, O’Shaughnessy KM . Genetics of arterial structure and function: towards new biomarkers for aortic stiffness? Clin Sci (Lond) 2008; 114: 661–677.

    Article  Google Scholar 

  6. Cernes R, Zimlichman R, Shargorodsky M . Arterial elasticity in cardiovascular disease: focus on hypertension, metabolic syndrome and diabetes. Adv Cardiol 2008; 45: 65–81.

    Article  CAS  PubMed  Google Scholar 

  7. Busija DW, Miller AW, Katakam P, Erdös B . Insulin resistance and associated dysfunction of resistance vessels and arterial hypertension. Minerva Med 2005; 96: 223–232.

    CAS  PubMed  Google Scholar 

  8. Hayden MR, Sowers JR, Tyagi SC . The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovasc Diabetol 2005; 4: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Izzard AS, Rizzoni D, Agabiti-Rosei E, Heagerty AM . Small artery structure and hypertension: adaptive changes and target organ damage. J Hypertens 2005; 23: 247–250.

    Article  CAS  PubMed  Google Scholar 

  10. Kovanecz I, Nolazco G, Ferrini MG, Toblli JE, Heydarkhan S, Vernet D et al. Early onset of fibrosis within the arterial media in a rat model of type 2 diabetes mellitus with erectile dysfunction. BJU Int 2009; 103: 1396–1404.

    Article  PubMed  Google Scholar 

  11. Burnett AL, Strong TD, Trock BJ, Jin L, Bivalacqua TJ, Musicki B . Serum biomarker measurements of endothelial function and oxidative stress after daily dosing of sildenafil in type 2 diabetic men with erectile dysfunction. J Urol 2009; 181: 245–251.

    Article  CAS  PubMed  Google Scholar 

  12. Muñoz MC, Giani JF, Dominici FP, Turyn D, Toblli JE . Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats. J Hypertens 2009; 27: 2409–2420.

    Article  PubMed  Google Scholar 

  13. Ferrini MG, Rivera S, Moon J, Vernet D, Rajfer J, Gonzalez-Cadavid NF . The genetic inactivation of inducible nitric oxide synthase (iNOS) intensifies fibrosis and oxidative stress in the penile corpora cavernosa in type 1 diabetes. J Sex Med 2010; 7: 3033–3044.

    Article  CAS  PubMed  Google Scholar 

  14. Michel T, Vanhoutte PM . Cellular signaling and NO production. Pflugers Arch 2010; 459: 807–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burut DF, Borai A, Livingstone C, Ferns G . Serum heat shock protein 27 antigen and antibody levels appear to be related to the macrovascular complications associated with insulin resistance: a pilot study. Cell Stress Chaperones 2010; 15: 379–386.

    Article  PubMed  Google Scholar 

  16. Goldstein I, Lue TF, Padma-Nathan H, Rosen RC, Steers WD, Wicker PA . Oral sildenafil in the treatment of erectile dysfunction. N Engl J Med 1998; 338: 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  17. Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM . Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 1998; 159: 2164–2171.

    Article  CAS  PubMed  Google Scholar 

  18. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM et al. Sildenafil. an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 1996; 8: 47–52.

    CAS  PubMed  Google Scholar 

  19. Beavo JA . Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995; 75: 725–748.

    Article  CAS  PubMed  Google Scholar 

  20. Aversa A, Bruzziches R, Pili M, Spera G . Phosphodiesterases type 5 inhibitor drugs in the treatment of erectile dysfunction. Curr Pharm Des 2006; 12: 3467–3484.

    Article  CAS  PubMed  Google Scholar 

  21. Behr-Roussel D, Gorny D, Mevel K, Caisey S, Bernabe J, Burgess G et al. Chronic sildenafil improves erectile function and endothelium dependent cavernosal relaxations in rats: lack of tachyphylaxis. Eur Urol 2005; 47: 87–91.

    Article  CAS  PubMed  Google Scholar 

  22. Rosano GM, Aversa A, Vitale C, Fabbri A, Fini M, Spera G . Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk. Eur Urol 2005; 47: 214–222.

    Article  CAS  PubMed  Google Scholar 

  23. Bray GA . The Zucker-fatty rat: a review. Fed Proc 1977; 36: 148–153.

    CAS  PubMed  Google Scholar 

  24. Kava R, Greenwood MR, Johnson PR . Zucker (fa/fa) rats. ILAR News 1990; 32: 4–8.

    Article  Google Scholar 

  25. Kurtz TW, Morris RC, Pershadsingh HA . The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 1989; 13: 896–901.

    Article  CAS  PubMed  Google Scholar 

  26. Toblli JE, Cao G, Lombraña A, Rivero M . Functional and morphological improvement in erectile tissue of hypertensive rats by long-term combined therapy with phosphodiesterase type 5 inhibitor and losartan. J Sex Med 2007; 4: 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  27. Toblli JE, Cao G, Casabé AR, Bechara AJ . Effects of ACE inhibition and beta-blockade on female genital structures in spontaneously hypertensive rats. J Sex Med 2007; 4: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  28. Toblli JE, Stella I, Mazza ON, Ferder L, Inserra F . The effect of different antihypertensive drugs on cavernous tissue in experimental chronic renal insufficiency. J Nephrol 2006; 19: 419–428.

    CAS  PubMed  Google Scholar 

  29. Toblli JE, Cao G, Casas G, Mazza ON . In vivo and in vitro effects of nebivolol on penile structures in hypertensive rats. Am J Hypertens 2006; 19: 1226–1232.

    Article  CAS  PubMed  Google Scholar 

  30. Ryu JK, Lee T, Kim DJ, Park IS, Yoon SM, Lee HS et al. Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in non-insulin-dependent diabetes mellitus rats. Urology 2005; 65: 611–615.

    Article  PubMed  Google Scholar 

  31. Niehaus W, Samuelson B . Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation. Eur J Biochem 1968; 6: 126–130.

    Article  CAS  PubMed  Google Scholar 

  32. Paoletti F, Aldinucci D, Mocall A, Caparrini A . A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem 1986; 154: 536–541.

    Article  CAS  PubMed  Google Scholar 

  33. Toblli J, Cao G, Rivas C, Munoz M, Giani J, Dominici F et al. Cardiovascular protective effects of nebivolol in Zucker diabetic fatty rats. J Hypertens 2010; 28: 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  34. Chance B, Maehly A Assay of catalase and peroxidase. In: Colowick SP, Kaplan NO (eds). Methods in Enzymology Vol. 2. New York: Academic Press, 1955, pp. 764–768.

    Chapter  Google Scholar 

  35. Lowry O, Rosebrough N, Farr A, Randall R . Protein measurement with the Folin-phenol reagent. J Biol Chem 1954; 193: 265–275.

    Google Scholar 

  36. Giani JF1, Gironacci MM, Muñoz MC, Peña C, Turyn D, Dominici FP . Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol 2007; 293: H1154–H1163.

    Article  CAS  PubMed  Google Scholar 

  37. Allen DA, Yaqoob MM, Harwood SM . Mechanisms of high glucose-induced apoptosis and its relationship to diabetic complications. J Nutr Biochem 2005; 16: 705–713.

    Article  CAS  PubMed  Google Scholar 

  38. Maiese K, Chong ZZ, Shang YC . Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem 2007; 14: 1729–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pacher P, Szabo C . Role of poly (ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 2005; 7: 1568–1580.

    Article  CAS  PubMed  Google Scholar 

  40. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C et al. Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112: 1049–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mokini Z, Marcovecchio ML, Chiarelli F . Molecular pathology of oxidative stress in diabetic angiopathy: Role of mitochondrial and cellular pathways. Diabetes Res Clin Pract 2010; 87: 313–321.

    Article  CAS  PubMed  Google Scholar 

  42. Ischiropoulos H, Zhu L, Beckman JS . Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys 1992; 298: 446–451.

    Article  CAS  PubMed  Google Scholar 

  43. Kooy NW, Royall JA . Agonist-induced peroxynitrite production from endothelial cells. Arch Biochem Biophys 1994; 310: 352–359.

    Article  CAS  PubMed  Google Scholar 

  44. Heeba G, Moselhy ME, Hassan M, Khalifa M, Gryglewski R, Malinski T . Anti-atherogenic effect of statins: role of nitric oxide, peroxynitrite and haem oxygenase-1. Br J Pharmacol 2009; 156: 1256–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vignozzi L, Filippi S, Comeglio P, Cellai I, Sarchielli E, Morelli A et al. Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit. Mol Cell Endocrinol 2014; 384: 143–154.

    Article  CAS  PubMed  Google Scholar 

  46. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37: 917–923.

    Article  PubMed  Google Scholar 

  47. Toblli JE, Muñoz MC, Cao G, Mella J, Pereyra L, Mastai R . ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008; 16: 770–776.

    Article  CAS  Google Scholar 

  48. Marques-Vidal P, Bastardot F, von Känel R, Paccaud F, Preisig M, Waeber G et al. Association between circulating cytokine levels, diabetes and insulin resistance in a population-based sample (CoLaus study). Clin Endocrinol (Oxf) 2013; 78: 232–241.

    Article  CAS  Google Scholar 

  49. Taube A, Schlich R, Sell H, Eckardt K, Eckel J . Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 302: H2148–H2165.

    Article  CAS  PubMed  Google Scholar 

  50. Carneiro FS, Webb RC, Tostes RC . Emerging role for TNF-α in erectile dysfunction. J Sex Med 2010; 7: 3823–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Carneiro FS, Zemse S, Giachini FR, Carneiro ZN, Lima VV, Webb RC et al. TNF-alpha infusion impairs corpora cavernosa reactivity. J Sex Med 2009; 6: 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Elçioğlu HK, Kabasakal L, Özkan N, Çelikel Ç, Ayanoğlu-Dülger G . A study comparing the effects of rosiglitazone and/or insulin treatments on streptozotocin induced diabetic (type I diabetes) rat aorta and cavernous tissues. Eur J Pharmacol 2011; 660: 476–484.

    Article  PubMed  Google Scholar 

  53. Hotston MR, Jeremy JY, Bloor J, Koupparis A, Persad R, Shukla N . Sildenafil inhibits the up-regulation of phosphodiesterase type 5 elicited with nicotine and tumour necrosis factor-alpha in cavernosal vascular smooth muscle cells: mediation by superoxide. BJU Int 2007; 99: 612–618.

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Li XX, Lin HC, Qiu XF, Gao J, Dai YT et al. The effects of long-term administration of tadalafil on STZ-induced diabetic rats with erectile dysfunction via a local antioxidative mechanism. Asian J Androl 2012; 14: 616–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bivalacqua TJ, Sussan TE, Gebska MA, Strong TD, Berkowitz DE et al. Sildenafil inhibits superoxide formation and prevents endothelial dysfunction in a mouse model of secondhand smoke induced erectile dysfunction. J Urol 2009; 181: 899–906.

    Article  CAS  PubMed  Google Scholar 

  56. Morelli A, Comeglio P, Filippi S, Sarchielli E, Vignozzi L, Maneschi E et al. Mechanism of action of phosphodiesterase type 5 inhibition in metabolic syndrome-associated prostate alterations: an experimental study in the rabbit. Prostate 2013; 73: 428–441.

    Article  CAS  PubMed  Google Scholar 

  57. Vignozzi L, Gacci M, Cellai I, Morelli A, Maneschi E et al. PDE5 inhibitors blunt inflammation in human BPH: a potential mechanism of action for PDE5 inhibitors in LUTS. Prostate 2013; 73: 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  58. Calderwood SK, Murshid A, Prince T . The shock of aging: molecular chaperones and the heat shock response in longevity and aging–a mini-review. Gerontology 2009; 55: 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hall L, Martinus RD . Hyperglycaemia and oxidative stress upregulate HSP60 & HSP70 expression in HeLa cells. Springerplus 2013; 2: 431.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JET is a career investigator from Consejo Nacional de Investigaciones Cientıficas y Tecnologicas of Argentina (CONICET) and received grant support from the University of Buenos Aires (UBA). We would like to thank to Ana Uceda and Mariana Feldman for their valuable technical support in the experiments, and Ms Jaquelina Mastantuono, who gently reviewed the style of this manuscript. This study was partially supported by the SLAMS grant for basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Toblli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toblli, J., Cao, G., Angerosa, M. et al. Long-term phosphodiesterase 5 inhibitor administration reduces inflammatory markers and heat-shock proteins in cavernous tissue of Zucker diabetic fatty rat (ZDF/fa/fa). Int J Impot Res 27, 182–190 (2015). https://doi.org/10.1038/ijir.2015.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijir.2015.13

Search

Quick links