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Physiological stress increases renal injury in
eNOS-knockout mice

Mildred A Pointer1, Geraldine Daumerie2, LaKessha Bridges1, Sadiqa Yancey1, Kelly Howard1, Wendell Davis3,
Paul Huang4 and Joseph Loscalzo5

African Americans have a fourfold greater likelihood of developing end-stage renal disease (ESRD) compared with Caucasians.

It has been proposed that the increased prevalence may be explained by non-traditional factors such as environmental

stress and psychosocial factors. In this study, we used infrequent running to exhaustion as a physiological stressor to mimic

real life experiences, such walking up stairs when an elevator is malfunctioning or running to catch a bus, to study its effect on

renal injury in a hypertensive mouse model (endothelial nitric oxide synthase-deficient mice; eNOS�/�). This model has

previously been shown to have renal injury comparable to that observed in African Americans. The effect of physiological stress

on renal injury was examined in the setting of low (0.12%), control (0.45%) and high (8%) dietary salt. Following bouts of

physiological stress, eNOS�/� mice had significantly greater interstitial inflammation compared with unstressed eNOS�/� mice

(two-way analysis of variance (2-ANOVA), Holm–Sidak; Po0.01). Interestingly, eNOS�/� mice on a high-salt diet had greater

interstitial inflammation compared with similarly stressed eNOS�/� mice on a low- or control-salt diet (2-ANOVA, Holm–Sidak;

Po0.03). These effects of stress were independent of systolic blood pressure (141±7, 143±4, and 158±8 vs. 141±4,

138±5, 150±4mmHg; end of study vs. baseline, respectively). There was no significant effect of stress or dietary salt on

renal injury in control wild-type mice (eNOS+/+). These data demonstrate that physiological stress exacerbates the renal

injury associated with hypertension and that high-salt compounds this effect of stress. These results provide support for the

idea that psychosocial and environmental factors contribute to the increased prevalence of ESRD in hypertensive African

Americans.
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INTRODUCTION

Hypertension is the second most common risk factor for kidney
disease, second only to diabetes mellitus.1–4 Kidney disease, chronic
kidney disease and end-stage renal disease (ESRD) have continued to
increase over the past decade despite improvements in hypertension
awareness, treatment and blood pressure control with treatment.2,5,6

One population that is particularly prone to ESRD is African Amer-
icans, a population that also has the highest hypertension prevalence
rate. Of particular note is that hypertensive African-American males
between the ages of 20 and 40 years are more prone to developing
renal disease compared with other sectors of the population, having a
10–14 fold greater rate for developing ESRD.1 The general population
of hypertensive African Americans has a fourfold greater likelihood of
developing ESRD compared with Caucasians. Interestingly, the dis-
parate incidence of ESRD between Caucasians and African Americans
persists even at systolic blood pressure below 130 mm Hg.7 The

mechanism of the disparate renal disease rate in this population is
not definitively known.

Bruce et al.8,9 have proposed that the reason for the striking
differences in ESRD in African Americans may include factors beyond
the traditional risk factors and associated pathophysiological pathway
activation. These authors proposed that in addition to these tradi-
tional factors, psychosocial and environmental factors may contribute
significantly to ESRD, especially within the African-American popula-
tion. An environment of social stress, such as racism in combination
with psychological responses of anxiety and depression, may explain
the greater prevalence. Recent studies have shown that socioeconomic
status is significantly correlated with chronic kidney disease and
ESRD,8,10 particularly within African-American populations.

We have previously shown that the endothelial nitric oxide synthase
(eNOS)-deficient mouse may be a model to study renal injury
associated with hypertension as seen in African Americans.11 African
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Americans are characterized as having reduced bioavailable nitric
oxide (NO) and the highest hypertension prevalence rates in the
United States, and are salt sensitive. We showed that the renal injury
seen in eNOS-deficient mice is similar to that described in African
Americans, and that a high-salt diet exacerbates the hypertension-
associated renal injury. In this paper, we propose that the renal injury
seen in hypertensive eNOS-deficient mice is exacerbated by physiolo-
gical stress. Mice deficient in the vasodilator eNOS are hypertensive
and exhibit significant renal injury.11–13 Therefore, in this study we
examined the effect of physiological stress (periodic exposure to
running to exhaustion) on renal injury in hypertensive eNOS-defi-
cient mice. African Americans often have diets high in salt, which may
be associated with tissue injury; for this reason, we also examined the
effect of physiological stress in combination with a high-salt diet on
renal injury in the hypertensive eNOS-deficient mice.

METHODS

Animals
Breeding pair stock for eNOS-knockout mice was obtained from the Jackson

Laboratory (Bar Harbor, ME, USA; stock # 002684) and Dr Paul Huang

(Massachusetts General Hospital; Boston, MA, USA). Both were bred onto the

background of the C57BL/6 wild-type control strain; thus, the C57BL/6 served

as the control mouse strain. Wild-type control (C57BL/6) breeding stock was

obtained from the Jackson Laboratory. All animals were maintained on regular

rodent chow. Mice were entered into the study once they reached 6 months of

age. Systolic blood pressure was measured using the tail-cuff method (Visitech

2000, Apex, NC, USA).

Protocol
Wild-type and eNOS-knockout mice were divided into three treatments

groups. Mice were placed on either a low-salt (0.12% NaCl; Harlan Teklad,

Madison, WI, USA; cat. no.T7034), regular-salt (0.4% NaCl; LabDiet, Rich-

mond, IN, USA; cat. no. 5001) or high-salt (8%NaC; Harlan Teklad, cat.

no.TD92012) diet for 8 weeks. Following baseline blood pressure measure-

ments, mice were exposed to 4–5 bouts of running to exhaustion, that is, mice

were stressed about once every 2 weeks while on either the low-, regular-,

or high-salt diets. Weekly tail-cuff blood pressures were taken throughout the

study. During the weeks when both exercise and blood pressure measurements

were performed, blood pressures were taken the day before or the day after

exercise.

Tail-cuff pressure measurements
Mice tail-cuff blood pressures were measured using the BP2000 instrument by

Visitech Systems. The room temperature was maintained at B721F throughout

this procedure. The mice were held in restrainers that were magnetically kept in

place on a heated (37 1C) platform. The cuff was gradually inflated and systolic

pressure was determined as that pressure when flow ceases as detected by a

sensor. One to two weeks were allowed for the training of mice.

Physiological stress protocol
Mice were exercised to exhaustion using a six-lane small rodent treadmill (Exer-

3/6 Columbus Instruments, Columbus, OH, USA). The Exer-6M treadmill

model was not equipped with the stimulus grid to avoid the added potential

stress factor of electrical stimulation. The animals were protected from

potential injury from the belt with a specially designed rear wall grid

(Columbus Instruments).

Mice were acclimated to the treadmill by placing them on the treadmill for

5 min several days before initiation of the exercise regimen (B2–3 sessions).

The exercise protocol was a modified version of that which has been used

previously in both rats and mice.14,15 Specifically, mice were run to exhaustion

once in every 14 days. The initial velocity of the treadmill was set at 11 meters

per minute (m min�1) and 0% incline, and was increased by 0.5 m min�1 in

every 4 min until exhaustion. Exhaustion was defined as refusal to continue to

run after prodding.

Tissue perfusion
At the end of the study (exercise and diet regimen), the animals were

anesthetized with isoflurane, the thoracic cavity was opened, and blood was

collected from the left ventricle and placed in a (type blood collection tube—

EDTA or without anticoagulant). To remove the remaining blood in the

circulatory system and tissues, animals were perfused (via the left ventricle)

with B5 ml of phosphate buffered saline (pH 7.4). Fixation was accomplished

by perfusion of the circulatory system (or total body perfusion) with B5 ml of

10% buffered formalin (Fisher, Pittsburgh, PA, USA, cat. no SF99-4). The

kidney and heart were harvested, weighed, routinely processed, sectioned and

placed on glass slides (Histotechniques, Powell, OH, USA). Sections of kidney

were stained with Periodic acid Schiff.

Histopathological evaluation and scoring
Kidney sections were examined by a board-certified veterinary pathologist

(WPD). Histopathological changes involving glomeruli, tubules, blood vessels

and/or the interstitium were graded as either absent (0), minimal (1), mild (2),

moderate (3) or severe (4). The sum of the severity scores from these regions

was used to establish a total severity score for each animal. In addition, the

distribution or extent of the renal injury was graded as being either focal (1),

multifocal (2) or diffuse (global). The product of the severity score and

distribution of renal injury was used to calculate an overall renal pathology

score for each animal.

RESULTS

Running to exhaustion
The duration of each exhaustive running session is shown in Figure 1.
There was no significant change in the time to exhaustion over the
experimental period in among the three groups of eNOS�/� mice
(0.12, 0.45, 8% dietary salt). Additionally, there was no statistical
difference in the time to exhaustion between wild-type and eNOS�/�

mice (not shown; two-way analysis of variance (2-ANOVA). The time
to exhaustion averaged 1614±373 s (n¼33) for eNOS�/� mice and
1384±286 s for wild-type mice (n¼20).

Effect of infrequent running to exhaustion on blood pressure
Blood pressure was significantly higher in eNOS-deficient mice and
remained unchanged over the course of the experimental protocol
independent of the dietary salt (Figure 2). Specifically, post treat-
ment blood pressures in eNOS�/� mice were 141±7, 143±4, and
158±8 mm Hg on low-, control-, and high-salt diets, respectively;
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Figure 1 Duration of running to exhaustion for eNOS�/� mice. Mice were

exposed to four sessions of running to exhaustion; the time to exhaustion is

plotted for each session for eNOS�/�mice on low-salt (0.12%; �); control-

salt (0.45%; J) and high-salt (8%; m) diets.
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these blood pressures were not significantly different from baseline
values of 141±4, 138±5, 150±4 mm Hg for low-, control- and
high-salt diets, respectively.

Baseline blood pressures in wild-type mice were 104±7, 98±8, and
102±4 mm Hg on low-, control- and high-salt diets, respectively.

Blood pressure values were not significantly different from baseline
at the end of the 8-week period in wild-type mice on low- and high-
salt diets (102±5, 109±5 mm Hg, respectively, not significant); how-
ever, blood pressure was significantly increased in the control mice at
the end of the 8 weeks on the control-salt diet (116±3 mm Hg,
Po0.05 vs. baseline).

Physiological stress in wild-type mice
Table 1 compares wild-type mice with and without the stress of
running to exhaustion. Shown are the pathology scores for renal
glomerular, perivascular, interstitial and tubular injury. There were no
statistically significant effects of physiological stress on renal injury in
wild-type mice (2-ANOVA, P¼NS).

Physiological stress in eNOS-deficient mice
Cardiac hypertrophy. Figure 3 shows the effect of the periodic stress
of running to exhaustion on cardiac weight in NO-deficient mice.
Two-way ANOVA did not reveal a significant effect of periodic
running to exhaustion on cardiac weight (P¼NS); however, cardiac
weight-to-body weight ratio was significantly lower in eNOS�/� mice
that were run to exhaustion while on a low-salt diet compared with
eNOS�/� mice on a low-salt diet that were not run to exhaustion (3-
ANOVA and Tukey, Po0.02). In contrast, eNOS�/� mice that were
run to exhaustion while on the control-salt diet had higher cardiac
weight-to-body weight ratio compared with NO-deficient mice that
were not run to exhaustion (2-ANOVA and Tukey, Po0.02). There
was no effect of exhaustive running on cardiac weight in eNOS�/�

mice on a high-salt diet.

Glomerular injury. Kidneys were evaluated for the presence of
glomerular injury, including fibrosis, increased cellularity, thrombosis
and/or sclerosis. As shown in Figures 4a and 5, periodic exposure to
running to exhaustion significantly reduced the degree of glomerular
injury in eNOS�/� mice independent of dietary salt (2-ANOVA,
Po0.05);. however, eNOS�/� mice on a high-salt diet had signifi-
cantly greater glomerular injury (2-ANOVA, Holm–Sidak; Po0.002)
as compared with eNOS�/� mice on a low-salt diet independent of
physiological stress.

Perivascular inflammation. When present, perivascular inflammation
was characterized by infiltrates of mononuclear cells, primarily
lymphocytes. Similar effects of physiological stress of running to
exhaustion as seen with glomerular injury were observed for perivas-
cular inflammation (Figure 4b); exposure to infrequent bouts of
running to exhaustion decreased perivascular inflammation in
eNOS�/� mice (2-ANOVA; Holm–Sidak, Po0.04). As was shown
with glomerular injury, perivascular inflammation was significantly
increased with high dietary salt in eNOS�/� mice (2-ANOVA,
Holm–Sidak; Po0.02).

Interstitial inflammation. Figure 4c shows the effect of periodic
running to exhaustion on interstitial inflammation in eNOS�/�

mice. Unlike with glomerular injury and perivascular inflammation,
bouts of exhaustive running significantly increased interstitial inflam-
mation (2-ANOVA, Holm–Sidak; Po0.01).

Tubular injury. When present, tubular injury was primarily char-
acterized by the presence of tubular dilation and protein casts.
Although not statistically significant, periodic bouts of running to
exhaustion tended to increase tubular injury on all salt diets
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Figure 2 Systolic blood pressure over the 8-week study for wild-type (WT)

and eNOS-knockout (eNOS�/�) mice. (a) The course of systolic blood

pressure in WT (J) and eNOS�/� (�) during low-salt diet (0.12%); (b) the

course of systolic blood pressure in WT (J) and eNOS�/� (�) during control-

salt diet (0.45%); (c) the course of systolic blood pressure in WT (J) and

eNOS�/� (�) during high-salt diet (8%). Not significant over time (1-ANOVA)

or between strains (2-ANOVA).
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(Figure 4d; 2-ANOVA, P¼NS). eNOS�/� mice exposed to physiolo-
gical stress of running to exhaustion while on a high-salt diet had
significantly greater tubular injury as compared with eNOS�/� mice
without exposure to bouts of exhaustive running (2-ANOVA,
Holm–Sidak; Po0.02).

DISCUSSION

In this study, we demonstrated that the physiological stress of
infrequent running to exhaustion may aggravate renal injury in
hypertensive, NO-deficient mice. In particular, interstitial and tubular
injuries were increased in hypertensive mice on a high-salt diet
following several bouts of running to exhaustion. Importantly, this
finding was independent of systolic blood pressure. In contrast,
glomerular injury and perivascular inflammation were decreased
following periodic physiological stress. Our results suggest that normal
life stress may be a contributing factor to increased renal injury in the
setting of reduced NO bioavailability and hypertension. These results
may help to explain how psychosocial and environmental factors
contribute to renal disease.8,10

ESRD is a major health burden in the United States resulting in an
annual cost to Medicare of approximately $28 million. There are only
two treatments for ESRD: dialysis and renal transplantation. Hyper-
tensive African Americans in general are four times more likely to have
ESRD; however, there are sectors of this group of individuals that are
10–14 times more likely to have kidney disease.1 An explanation for

this remarkable disparity is not currently available. Bruce et al.9 have
offered that the unique experiences of life that include environmental
stress, and the emotional and behavioral responses to the environment
may explain the disparity. We, as well as others, have shown that in
African American experiences of racism and the emotional response to
it are associated with increased resting blood pressure, the second
most important risk factor for ESRD.16–19 Studies have shown that
daily struggles of life can have a significant impact on health and
disease, particularly among hypertension in African Americans.20–22

One explanation for the predisposition of renal injury in African
Americans could be a consequence of an imbalance between endo-
genous vasodilators and vasoconstrictors. African Americans are
characterized as having reduced bioavailable NO, a major contributor
to blood pressure regulation and tissue perfusion.23 Reduced bioavail-
able NO may be insufficient to mitigate the actions of an activated
vasoconstrictor system on resistance blood vessels, the principal
determinants of blood pressure and subsequent tissue perfusion.
Thus, normal physiological elevations of vasoconstrictors may appear
exaggerated in the presence of inadequate NO leading to greater
reductions in tissue perfusion. The resulting impaired tissue perfusion
may explain the predisposition to tissue injury.

In the current study, we used eNOS-null mice to examine the effect
of physiological stress on the renal injury normally observed in this
model.11 We have previously reported that the renal injury pattern
includes glomerular sclerosis, interstitial inflammation and fibrosis, a
pattern similar to that observed from biopsy samples from hyperten-
sive African Americans.24–26 Therefore, we introduced the physiolo-
gical stress of infrequent running to exhaustion, an event comparable
to shoveling snow during winter, running to catch public transporta-
tion or climbing stairs to an apartment in housing developments.
Running on a treadmill is often used as a stress test for humans,
particularly when assessing cardiac and endothelial function.27–30

Running activates the sympathetic nervous system leading to the
release of norepinephrine, a known stress hormone.31 In this study
we used a modified version of previously published treadmill running
regimen used for mice.15,32,33 Running to exhaustion was only to
be considered as a stressor and not as training; consequently, we
chose to expose the mice to the running until they were exhaustred
once every 14 days. The training effect of exercise is seen with more
frequent exposures such as a daily routine.34 Therefore, the infre-
quency of the running is not expected to lead to the benefits of regular
exercise. Consequently, the running regimen is a stressor rather than
exercise.

Using this model, we show that physiological stress of a real life
experience such as infrequent running to exhaustion can exacerbate
the renal injury usually associated with hypertension. Specifically, we
show that tissue inflammation and tubular injury significantly
increased in eNOS�/� mice exposed to bouts of infrequent running
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Table 1 Effect of physiological stress on renal injury in control (WT) mice

Strain Salt diet, % (n) Glomerular damage Tubular damage Interstitial inflammation Vascular inflammation

WT control 0.12 (11) 0.0±0.0 1.1±0.4 2.2±0.8 0.6±0.6

0.45 (8) 0.0±0.0 1.1±0.4 0.8±0.5 0.1±0.1

8 (11) 0.2±0.2 0.9±0.4 1.5±0.8 0.9±0.6

WT exercise 0.12 (6) 2.0±2.0 0.5±0.5 0.5±0.5 1.3±1.3

0.45 (5) 1.2±1.2 1.6±0.7 3.6±1.6 0.0±0.0

8 (6) 0.0±0.0 0.0±0.0 1.5±1.5 1.5±1.5

Abbreviation: WT, wild type.
Values¼mean±s.d.
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to exhaustion. This finding is consistent with evidence that shows that
target organ damage has a significant inflammatory component.35–38

Of particular interest is the observation that the experience of
environmental stress, such as discrimination, is associated with
increased C-reactive protein, an inflammatory marker, in a cohort
of older African Americans.39,40

We further show that a high-salt diet adds to the effect of stress on
renal injury. Specifically, interstitial inflammation is significantly
greater in stressed eNOS�/� mice on a high-salt diet compared with
unstressed eNOS�/� mice on high-salt diet. We have previously shown
that a high-salt diet is associated with increased renal injury in
eNOS�/� compared with WT control mice.11 This is the first
demonstration that stress compounds the effect of high salt on renal
injury.

The results of stress on cardiac hypertrophy revealed that physio-
logical stress of infrequent running to exhaustion did not aggravate
the hypertrophic action of long-standing hypertension in eNOS�/�

mice on low- and high-salt diet. However, stress increased the cardiac
hypertrophy in mice on control-salt diet compared with unstressed
mice. The reason for the differences in stress effect under varying
salt diets is unclear. The lack of an effect of stress in the low-salt group

may be the result of a protective action of a low-salt diet; others have
shown that high dietary sodium chloride can promote tissue
injury.41,42 Therefore, a low salt may be protective.43–45 Failure to
see an increase hypertrophy in eNOS�/� mice on a high-salt diet is
unexpected as increased b-adrenergic46–48 and high salt both
promotes hypertrophy.49–51 Perhaps the lack of an effect of stress in
eNOS�/� mice on high-salt diet is explained by an inhibitory action
of TNFa on b-adrenergic hypertrophic actions.52 TNFa has been
shown to be elevated in eNOS�/� mice53 and high salt also increases
TNFa.54 Consequently, the elevated TNFa may counteract the effect of
adrenergic system activation due to stress on hypertrophy. In the case
of eNOS�/� mice on control-salt diet, the combined effect of
angiotensin II and adrenergic system activation may be unopposed
by any inhibitory action of TNFa on b-adrenergic system. More
studies are needed to determine the interaction of salt and stress on
cardiac hypertrophy, particularly in the setting of impaired NO
bioavailability.

Thus, in this study, we demonstrate that the physiological stress of
everyday life occurrences may exacerbate the renal injury associated
with hypertension associated with NO deficiency. Furthermore, a
high-salt diet may aggravate the effect of physiological stress on
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renal injury. These results are relevant to the clinical findings of a 4–14
fold greater prevalence of the kidney disease in African Americans who
are characterized by impaired NO bioavailability, salt-sensitivity and
unique environmental stresses, and who have a hypertension preva-
lence rate of almost 45%. More studies are needed to characterize fully
the inflammatory pathway, physiological correlates of stress and renal
injury in this model.
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