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Haplotype frequencies of linked loci in
backcross populations derived from inbred

lines

P. M. VISSCHER* & R. THOMPSON
Ros/in Institute (Edinburgh), Roslin, Mid/othian EH25 9PS, U.K.

Linkage disequilibrium among loci is an important parameter in explaining genotypic means
and variances in animal and plant breeding populations. Joint haplotype frequencies and their
sampling covariance matrix for any number of linked loci were derived for backcross popula-
tions derived from inbred lines. The predicted frequencies can be used to test whether the
linkage disequilibrium observed between (marker) loci in backcross populations is as expected.

Keywords: backcross population, gene frequency, inbred lines, linked loci.

Introduction

In animal and plant breeding populations, linkage
disequilibrium among loci plays an important role in
explaining observed genotypic means and variances.
Understanding the behaviour of linked loci in breed-
ing programmes is important because it may influ-
ence the selection decisions of breeders. In
particular, with the advent of marker assisted selec-
tion and marker assisted introgression the prediction
of joint frequencies of marker alleles and quantita-
tive trait alleles partly determines the efficiency of
such selection programmes. For example, when
introgressing a gene based on flanking markers in a
backcross breeding programme, it would be useful to
know the expected frequency of the gene to be
introgressed in the nth backcross population if
parents in each generation are selected solely on the
basis of their flanking marker genotypes.

For two linked loci, genotype frequencies have
been documented for many plant and animal popu-
lation structures (Kempthorne, 1957; Mather &
Jinks, 1971; Bulmer, 1980). To our knowledge,
results for three or more linked loci have not been
documented. In this paper, we derive the genotype
frequencies for any number of loci for a backcross
population originating from inbred lines with
random mating, which are required as a basis of
studies of marker assisted selection and introgres-
sion programmes in these populations. Although

Correspondence.

alleles at the individual loci could be genes or
markers, in our notation, at least for three loci, we
use two flanking markers with a quantitative trait
locus (QTL) somewhere in that interval. The reason
for this is that we are interested in the frequency of
marker haplotypes and in the average QTL value for
different marker haplotypes because those deter-
mine the efficiency of marker assisted selection. For
more than three loci, we present haplotype frequen-
cies in a general way.

Methods

Gene frequencies for two and three foci

For the case of three loci, we consider a straightfor-
ward extension f methods presented for two loci
by, for example, Kempthorne (1957), Mather &
Jinks (1971) and Bulmer (1980).

Consider a single marker bracket of length L
(Morgans) with a recombination rate of r between
the markers (i.e. the loci flanking an interval with
length L). r1 is the distance between the first marker
and the QTL and r2 between the QTL and the
second marker. Allele i (i = 1,2) is from the ith
inbred line. Without loss of generality, assume that
line 2 is the recurrent line. We wish to calculate the
frequencies of all gametes (MIQJMk) in all genera-
tions. From those we can calculate average values
for different marker genotypes (depending on the
genetic model). Throughout, we assume the
mapping function of Haldane (1919) without inter-
ference, i.e. r = r1 +r2—2r1r2.
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Frequencies of marker hap/otypes

Denote frequencies of marker haplotypes at genera-
tion t as f11(t) (M1M1), f12(t) (M1M2), f21 (t) (M2M1),
fhet(t) (M1M2 and M2M1) and f22(t) (M2M2). Note that
M1M are the marker haplotypes received from the
crossbred parent. (We only need to consider the
contribution from the crossbred parent because the
contribution from the recurrent inbred line is always
M2Q2M2.) The vector f(t)' = (f11(t) fhet(t) f22(t)). Ifl
the absence of selection, f(t + 1) = P f(t), with

r(l—r) 0

P=Ir 0

L1_r) 1

and f(O)' = [1 0 01.
P has eigenvalues 1, and (1 —r). If P = QDQ1,

then

and

r 1 11
Q_1H —2 —1 0

L—i 0 0

Following through gives expressions for the marker
bracket frequencies at generation t,

fn(t) = ( (1—r)

fhet(t) = 2()1 [1 —(1 _r)E]

f22(t) = 1 _()t [2—(1 —r)'].

In Table 1 the frequencies of marker gametes are
shown for several values of r in backcross genera-
tions 1, 2, 5 and 10. Although tight linkage has a
large effect on the frequencies in early backcross
generations, frequencies after, say, five generations
of backcrossing are either small (for fii and fhet) or
large (for f22).

Frequencies of marker-QTL brackets

The same approach was taken to find the frequen-
cies of marker-QTL brackets. The derivation is
shown in Appendix A. Combining the frequencies
for the same marker haplotypes gives the average
value for the marker haplotypes at generation t. If
the inbred lines are fixed for alternative alleles of
the QTL, and the average effect of an allele substi-
tution is (i.e. the inbred lines differ by 2x), then
the average values of marker haplotypes at genera-
tion t g(M1M)) are,

g(M1M1) = [1—2(1 —r1)'(l —r2)11(1 —r)t](c/2)

g(MM2) = [1
—2(1 —ri)t{1 —(1—r2)'}I

{1 —(1 —r)'}](o/2)

g(M2M1) = [1—2(1—r2)t{1—(1—riY}/
{1 —(1 _r)t}J(xI2)

g(M2M2) = [1 —2{1 —(1 —r1)t}{1 —(1 —r2)'}/
{(2'—l)—(l —(1—r)')}](cx/2).

For example,

g(M1M1) = [{h(M1Q2M1)—h(M1Q1M1)}/
{h(M1Q2M1) +h(M1Q1M1)}](c!2)

= [1—2(1 —ri)1(1 —r2)t/(1 —r)t](/2).

In Table 2, average values for marker haplotypes
received from the crossbred parent relative to the

Table 1 Haplotype frequencies (x 10,000) for two linked loci in backcross generation t for recombination fraction of r
between the loci

fii fhet f22

t 1 2 5 10 1 2 5 10 1 2 5 10

r
0.5 2500 625 10 0 5000 3750 605 20 2500 5625 9385 9980

0.4 3000 900 24 0 4000 3200 576 19 3000 5900 9399 9981

0.3 3500 1225 53 0 3000 2550 520 19 3500 6225 9428 9981

0.2 4000 1600 102 1 2000 1800 420 17 4000 6600 9477 9982

0.1 4500 2025 185 3 1000 950 256 13 4500 7025 9560 9984
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Table 2 Values (in %, relative to the mean of the recurrent inbred line) of marker haplotypes received from the crossbred
parent in generation t for recombination fraction of r between the markers and a QTL in the centre of the marker bracket

fi fhet f22

t 1 2 5 10 1 2 5 10 1 2 5 10

r
0.5 0.00 50.00 93.75 99.80 0.00 50.00 93.75 99.80 0.00 50.00 93.75 99.80
0.4 —74.54 —52.31 —1.23 48.76 0.00 22.05 65.51 92.39 74.54 80.77 95.73 99.82
0.3 —90.35 —81.17 —56.19 —21.98 0.00 12.80 44.46 76.53 90.35 91.05 97.30 99.85
0.2 —96.82 —93.70 —84.62 —70.42 0.00 6.97 26.37 52.73 96.82 96.57 98.66 99.90
0.1 —99.38 —98.76 —96.92 —93.89 0.00 2.92 11.56 25.27 99.38 99.25 99.63 99.97

value of the QTL allele from the recurrent line
(= 100 per cent) are shown for various recombina-
tion fractions between the marker loci, assuming
that the QTL is in the centre of the interval. If the
QTL is marked by two flanking markers which are
close together (r<0.2), the average value of marker
haplotype M1M1 increases very slowly (because of
double recombinants) whereas the value of M2M2 is
nearly 100 per cent in all generations.

General case of n linked loci

Although the same approach can be taken to derive
the haplotype frequencies for more than three loci,
the matrices become rather large and the algebra is
tedious. Fortunately, the method can be generalized
for any number of loci if joint frequencies of marker
(loci) haplotypes are related to marginal frequen-
cies. We find it simpler to predict partially marginal
frequencies. The joint frequencies can be written as
f(t) with u an n-vector with each element
u(i= 1, ...,n) 1 or 2. If we sum over a set of loci
then we will get a marginal frequency. We use s, an
n-vector with elements 0 or 1, with s, = 0 indicating
summation over the alleles of the ith loci, so that

f(t) =
(::fU(t).

(1)

Marginal frequencies are calculated if s, = 0 and
conditional frequencies are calculated if s, = 1.
Therefore, with two loci (n = 2),

f?1(t) =f11(t)

fg1(t) =fii(t) +f21(t)

f%(t) =f11(t) +f12(t)

f0(t) =f11(t) +f12(t) +f21(t) +f22(t).

Then, using the equations previously derived for
marker haplotypes,

f?i(t) = ()t(1 _r)1

f1(t) =f?o(t) = ()t
f8(t) = 1.

Similarly for three loci,

f?ii(t) = (i)t(1 —r)'(1 —r2)'

f?io(t) = ()t(1 _ri)t
f?oi(t) = (!)t(1 _r)t
cO / \ —j ioo(j — 2)

to /
jooot —

Hence, each of these partially marginal frequencies
changes at a rate of g. per generation. The formula
for g. depends on the loci that f(t) is summed over
to form f(t). This number of loci is b =bits(s),
where bits(s) is the number of nonzero elements of
s. If b=0, then g=1, and if b=1, then g5=.
Finally, if b >1 then f(t) is a marginal frequency for
b loci with u(i 1,..., b) including the b elements of
s, which are zero, and,

g= fl (1—r+1)

with r the recombination rate between the ith and
jth loci. For all marginal frequencies,

f(t-f-1) =f(t) xg5, or

f(t) = (g)t.
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These results generalize for any number of loci.
Hence, given recombination rates between loci, the
marginal frequencies can be calculated. In matrix
notation, let f(t) be the vector of elements f(t) and
f°(t) the vector of the f(t). As before,
f(t + 1) = Pf(t). If T is the transformation taking f(t)
to f°(t), i.e. f°(t) = Tf(t), and f°(t+1) = Df°(t), then
we see that f(t + 1) = T'DTf(t), so that elements of
the vector g correspond to the eigenvalues of matrix
P. and T gives the eigenvectors of P.

Joint frequencies, f(t), can be calculated from the
marginal frequencies by a simple modification of
Yates' algorithm (Yates, 1937). This procedure is
used to work out effects associated with an analysis
of variance in a 2 table, and involves n rounds of
replacing a 2" -vector by sums and differences of
elements of this vector. To get joint frequencies
from partially marginal frequencies we need the
reverse of the operation defined by eqn (1). It is
convenient to form the frequency in (n +1) steps. In
the ith step (i = 1 ..., n) we form

f1(t) =f'—'(t) —f—1(t)
for 5, = 0 and s, = 0,1 (i and

v,= 1 andv =s (ij).
This operation forms joint frequencies for the ith
locus. For example,

fb(t) =f21(t) +f22(t), fi(t) =f22(t)

f(t)=f21(t), f(t) =f21(t)

f(t) =fll(t)+f12(t), f](t) =f12(t)

f(t) =f(t), fc(t) =fii(t).
In the (n + 1)th stage we relate f(t) to f(t) using

= 2—s1, changing identifiers of f(0,1) to the mdi-

cators of the alleles (1 and 2). For n =2,

f22(t)=f](t)
f21(t)=f(t)
f12(t)=f](t)
fii(t)=f(t).
By ordering the elements in the initial f° vector in a
standard way, the elements to be changed in the ith
round can be simply expressed in terms of powers of
2. Fortran algorithms which calculate the geometric
factors g and joint frequencies from marginal ones
can be obtained from the authors.

As an example, we calculate the joint frequencies
of four evenly spaced linked (marker) loci which are
20 cM apart for backcross generations 1, 5 and 10.
Results are presented in Table 3. The marginal
frequencies f(1), i.e. marginal frequencies at the
first generation and the corresponding s vectors are,

= (0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110,
0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111)

f(1) = (1.0000, 0.5000,
0.3 159, 0.3784,
0.3159, 0.2390,
0.2166).

For example, for s = (0111) = (1 —r23)(1 —r34) =

(1 _0.2433)2 = 0.2863.

In Appendix B we show that the variances of
haplotype frequencies are,

var(f(t)) = diag(f(t))—f(t) f(t)'. (2)

An algorithm to calculate the joint frequencies f(t)
has already been presented. Therefore, calculating

TabLe 3 Joint haplotype frequencies (x 10,000) for four equally spaced (marker) loci on a chromosome of length 100 cM
for backcross generations 1, 5 and 10

Haplotype

Backcross generation

Haplotype

Backcross generation

1 5 10 1 5 10

M2M2M2M2
M2M2M2M1
M2M2MM2
M2M2M1M1
M2M1M2M2
M2M1M2M1
M2M1M1M2
M2M1M,M1

2166
697
224
697
224
72

224
697

9015
215
167

55
167

9
44
14

9963
9
9
1
9
0
1
0

M1M2M2MZ
MIMZM2M1
M1M2M1M2
MIM2M1MI
M1M1M2M2
M1M1M2MI
M1M1M1M2
MIM1M1MI

697
224

72
224
697
224
697

2166

215
8
9
3

55
3

14
5

9
0
0
0
1
0
0
0
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0.5000, 0.2838,
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the covariance matrix of f(t) is straightforward using
eqn 2. In the case of independent loci, the variance
of haplotype frequency i simply reduces to
f(t)(1 —f(t)1) which is the expected variance using
binomial errors.

Discussion

We have shown that if there is no selection the joint
haplotype frequency is relatively easily calculated for
any number of linked loci. For three loci (two
marker loci and a QTL), the value of a particular
marker bracket quickly changes because of recombi-
nation. The covariance matrix of the haplotype
frequencies is easy to calculate and requires know-
ledge only of the expected frequencies at any
generation.

In practice, selection may operate in that genes
may be introgressed (from a donor line) and at the
same time the rest of the genome of the donor line
may be selected against, so that the predictions of
frequencies will not be accurate. The presented
algorithm can be used to test whether linkage dis-
equilibrium is as expected from random mating in
the absence of selection.

Appendix A

Joint frequencies of two marker foci and a single QTL
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Let h(t) be a vector with frequencies of gametes [M1Q1M1 M1Q2M1 M1Q1M2 M1Q2M2 M2Q1M1 M2Q2M1
M2Q1M2 M2Q2M2] at generation t. As for the case of two loci, let,

h(t+l) = H h(t), with

Ti
(1 —ri)(1 —r2)
1

r1r2

(1 —r1)r2

(1 —r2)rt
(1 —ri)r2

r1r2
1
(1 —r1)(1 —r2)

0 0 0
(1—r) 0 0 0
0 (1—r)
1r 1r1 2 0

0 0 (1—r2)
0 r2
0 r2

(1—r) (1—r) 1

2(1r2)2

0 0

and h(O)'=[l 00000000].
Decompose as H' = U D U1; This can be performed using standard statistical software. H has eigenvalues
(1 —r1)(1 —r2), (1 —r), (1 —r1), , (1 —r2), , , 1 and the matrices U and U can be determined easily. Now,
h(t)' = h(O)' (H')t = h(O)' U Dt U1.

The Genetical Society of Great Britain, Heredity, 75, 644—649.

0

0

0

0

0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0
0 0
1 1
2 1



FREQUENCIES OF LINKED LOCI 649

This gives the frequencies of the marker-QTL gametes at generation t as,

h(M1Q1M1) = () t[( —rj)'(l —r2)t]

h(M1Q2M1) = () [(1—r)'—(l _r])t(1_r2)t]

h(M1Q1M2) = () '[(1 _ri)t{1 —(1 —r2)}]

h(M1Q2M2) = () t[{] —(1 r)t} —(1 _ri)t{1 —(1 T2)}]

h(M2Q1M1) = () '[(1 —r2){1 —(1 _ri)t}]

h(M2Q2M1) = () '[{l —(1 —r)'} —(1 —r2)'{1— (1 —r1)t}J

h(M2Q1M2) = () [{1 —(1 _ri)t}{1 —(1 —r2)'}J

h(M2Q2M2) = () t[(t_ 1)— {1 —(1 _r)t} — {1 —(1 __ri)t}{1 —(1 T2)}]

= 1—[1 +{1 —(1—r)'} +{1_(1_r1)t}{1_(1_r2)i}].

Appendix B

Variances of haplotype frequencies

Using the notation from the main text, the (co)variance matrix of f(t) can be derived easily. In general, using
the joint frequencies,

f(t) =Pf(t—1)+e, and (Bi)

var(f(t)) = diag(f(t)) —Pt diag(f(O)) P't, (B2)

with diag(f) indicating a diagonal matrix with elements corresponding to the vector f. We assume that each
individual has one offspring only and that sampling of frequencies is multinomial.

In our case, the vector f(O) has a special form, with its first element unity, and all other elements zero. Then
eqn B2 simplifies, because

P' diag(f(O)) P't = Pt diag(f(O)) diag (f(O)) P't = (Pt)1 (f(O)) (f(O)) (p't)i
= Ptf(O) = f(t) f(t)'.

Hence,

var(f(t)) = diag(f(t))—f(t) f(t)'. (B3)
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