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1. INTRODUCTION

THERE has been considerable recent interest in the existence of stable
equilibria under selection as a possible means of maintaining genetic
variability. Most work has been confined to the two-locus case (see, for
example, the literature cited by Gale and Kearsey, 1968). The purpose
of this paper is to develop a general theory applicable to a metric character
determined by a relatively large number of loci, so that the effect of any
particular locus is relatively small. This problem was first considered by
Fisher (1930) and Haldane (1932), and was later investigated in more
detail by Robertson (1956); it will be seen, however, that the results of
these authors must be modified in one important respect, and that they can
also be considerably extended. The effect of linkage disequilibrium will be
ignored in the present paper, but it is believed that the results obtained here
will be essentially correct under the rather weak selective pressures likely
to be found under natural conditions.

2. THE EFFECT OF SELECTION

Suppose that there are two alleles, A1 and A2, at a particular locus, with
gene frequencies p and q, and with genetic effects on some metric character
as set out in table 1. The quantity D represents the degree and direction

TAnLE I

The genetic effect at a particular locus

Genotype A1A1 A1A2 A2A2
Frequency p2 2pq q2
Effect —a aD a
Deviation from mean = d —2aq(1+pD) a[(p—q)+D(1—2pq)J 2ap(1—qD)

of dominance; when D= 0 there is no dominance, when 0<j D < 1 partial
dominance, when D J = I complete dominance, and when D > 1 over-
dominance. The contribution from this locus to the genetic variance is
proportional to a2, and it will be assumed that a2 is sufficiently small com-
pared with the total phenotypic variance, V, that higher powers of a can be
ignored.

Let us now consider the effect on this particular locus of an arbitrary
fitness function such that the fitness of an individual with phenotypic value
y is w(y). Consider a group of individuals with a specified genotype at this
locus, and consequently with mean M+ d, where M is the population mean
and d is the appropriate deviation from the mean shown in the last row of
table 1. If the density function in this specified group isf(y—d), then the
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average fitness of this group relative to a group with the same distribution
but with d = 0 is

Relative fitness = ff(y—d)w(y)dy/jf(y)w(y)dy. (1)

To sufficient accuracy we may take f as the density function for the whole
population, since the effect of the small decrease in the variance caused by
fixing the genotype at a particular locus will almost disappear in the above
ratio. Furthermore, if we expand f(y—d) in a Taylor series about d =0,
we find that the selection pressure, s, against this genotype, defined as

— Relative fitness, is
s = Ad—Bd2+o(d2) (2)

where
A = ff(y)w(y)dy/ff(y)w(y)dy
B = ff"(y)w(y)dy/ff(y)w(y)dy. (3)

Let us now consider the effect of selection on the gene frequency at this
locus. If the selection pressures against the three genotypes are s11, s12 and
s22 respectively, then the change in p as a result of one generation of selection
is, to order a2,

= pq[—sjjp+s12(p—q) +s22q]. (4)

Evaluating the selection pressures from Equation 2 and substituting the
appropriate values of d from table 1, we find that

= pq(Aa[l+(p—q)D]--Ba2[(p—q)(l+(p—q)D)2—4pqD]}. (5)

At equilibrium p must be zero, so that the expression in curly brackets must
be zero for a non-trivial equilibrium.

To interpret the significance of the coefficients A and B defined in
Equation 3 let us suppose that the phenotype is normally distributed with
mean M and variance V. Then

fF(,) -
I (-M)2") =
V +

V2 ] f(y). (6)

Furthermore, the distribution of the phenotype after the operation of selection
is f(y)w(y)/ff(y)w(y)dy. If the mean and variance after the operation of
selection are M+ DM and V+ DV respectively, it follows that

A = —DM/V
B = (DV+DM2)/V2. (7)

At equilibrium DM must be approximately zero, so that B is approxi-
mately Dy/V2. Now stabilising selection tends to reduce the phenotypic
variance and will therefore be associated with a negative value of DV and
hence of B, while disruptive selection tends to increase the phenotypic
variance and will therefore be associated with positive values of DV and B.
It will be seen in the next section that the conditions for the stability of an
equilibrium depend essentially on the sign of B and hence on the type of
selection in operation.
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Since DM and consequently A must be small at equilibrium it might
be thought that A could be ignored. This would not be valid, however,
unless Aa were small compared with Ba2, that is to say unless A were small
compared with a. This assumption cannot be made for the following
reasons: (1) The result that A = —DM7 V is only true exactly under
normality. (2) The result that DM = 0 at equilibrium only holds exactly
when the regression of offspring on parent is linear; non-linearity may be
introduced by dominance or by skewness in the distribution of environ-
mental deviations. (3) Even if it were true that A = 0 at equilibrium, it
would be necessary to take account of small changes in A resulting from small
departures from equilibrium in order to study the stability of the equilibrium.
Previous investigations by Fisher (1930), Haldane (1932) and Robertson
(1956) have assumed that the selection pressure is proportional to d2 and
have thus implicitly ignored the coefficient A.

3. THE STABILITY OF EQUILIBRIA

Loci with equal effects without dominance

We consider first the simplest case of X loci each with the same effect,
without dominance. If the gene frequency at the ith locus is p the genetic
variance is h2V = 2a2L'pjq1, where h2 is the heritability; the remaining
variance is assumed to be due to independent environmental effects. The
change in the ith gene frequency as the result of selection is, from Equation 5
with D = 0,

Lp1 = pjqj{Aa—Ba2(pi—qi)}. (8)

At equilibrium we must have iXp1 = 0, so that, unless Pi = 0 or 1, the
equilibrium gene frequency, F, must be the same at all loci and must satisfy
the equation

A—Ba(P—Qj = 0. (9)

To investigate the stability of this equilibrium suppose that it is subjected
to a small perturbation so that p1 = P+e1. Then in the next generation
4 = e + pi; to order a2, iXp1 is given by

IdA 1
LPi = PQ a zM—a2Be1 (10)

where M = — 2a.'e; is the change in the mean due to the perturbation.
Furthermore, since 8f/tM = — f/j' = —f', it follows from the definitions
of A and B in equation 3 that

—B+A+—B. (11)

Hence, to order a2,

=
e1 +

h2VB
{L'ej—ei}. (12)

If e is the column vector of the el's then

e* Ce (13)
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where the matrix C has diagonal elements I + Bh2V/J'T and off-diagonal
elements Bh2V/J'/.

The stability of the equilibrium depends on the latent roots of the matrix
C; if the dominant latent root is less than 1 in absolute value the equilibrium
is stable, otherwise it is unstable. It is not difficult to show that the matrix
has two latent roots,

A1 = l—4B/t2VfJsI

A2= l+B/L2V(l_7) (14)

the first latent root having multiplicity (N— 1) and the second being a
single root. Thus whatever the sign of B one or other of the two roots must
be greater than 1, and so the equilibrium is unstable under any form of
selection, either stabilising selection (B negative) or disruptive selection
(B positive). This is in disagreement with the results of Robertson (1956)
who concluded that disruptive selection leads to a stable equilibrium in
the absence of dominance.

To investigate further the reason for instability in these two cases let us
write ë = Eej/N, 6i = (et —e). It follows from Equation 12 that

= A2e

= A16. (15)

If B is negative (stabilising selection) A1 will be greater than 1 and A2 less
than 1; hence ëwill tend to zero, so that the average gene frequency which
determines the mean of the distribution will tend to revert to its equilibrium
value, but the 6j's will diverge, so that the individual gene frequencies will
tend to fixation at 0 or 1. On the other hand, if B is positive (disruptive
selection), A2 will be greater than 1 so that a will diverge, but A1 will be less
than 1 SO that the 6j's will tend to zero; hence the gene frequencies will all
tend to have the same value but they will move away together from the
position of unstable equilibrium. This conclusion makes sense if we think
of disruptive selection as being caused by selection for two widely separated
optimal values with an equilibrium value in between them; the system will
tend to move away towards one or other of the optimal values until a
situation of stabilising selection is reached.

Loci with equal effects with dominance
Let us now consider the case of N loci each with the same effect but with

coefficient of dominance D as defined in table 1. Proceeding in the same
way as before, we find that if the system is displaced slightly from its equili-
brium position, then in the next generation

e = e1 + {Ee5—ccej} (16)

where
cc = [l+8D2PQ—D2]/[l+(P—Q)D]8 (17)

and where h2V = 2NPQa2[l + (P— QJD]2 is the additive genetic variance.
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The matrix C which defines stability has diagonal elements 1 + (I —cc)Bh2V/J'f
and off-diagonal elements Bh2V/J'T. Its latent roots are

A1 = l—ccBh2V/JV

A2 = l+Bh2v(l_;) (18)

with multiplicities (N— 1) and 1 respectively.
If B is negative (stabilising selection) the condition for stability is that cc

is negative. This condition is fulfilled if either (P — Qj and D have the same
sign and 8PQ< (D2— l)/D2 or (P— Q) and D have opposite signs and
(D2—l)/D2<8PQ<2(D2—l)/D2. Thus there cannot be stability unless
there is overdominance, and the region of stability increases with the amount
of overdominance. For example, if there is a small amount of overdominance
so that D = 1 + a, where a is a small positive quantity, the regions of stability
are P> 1—.a and c<P<a. If D +2, the regions of stability are
P>09 and 0l <P<025. When D becomes very large the regions of
stability become P>085 and 015<P<05. (ForD < —l the above results
remain valid if Q is substituted for P.)

If B is positive (disruptive selection) the condition for stability is that
cc > N. If cc is fixed then the equilibrium must always become unstable as
the number of loci increases, but stable equilibria may exist for moderately
large values of N. For example, if D = 1 (complete dominance of the A2
gene) then cc = Q/P2; if)V = 50 there is stable equilibrium when P < 0095,
and in general the approximate condition for stability when D = I is that
P< (2N). Large values of cc are in general associated with a high ratio of
dominance variance to additive genetic variance and hence with a low
heritability.

Loci with unequal effects
In the general case when the ith locus has an effect in the homo-

zygotes and aD1 in the heterozygote, the equilibrium gene frequency, P,
which makes the expression in curly brackets in Equation 5 zero, will vary
from locus to locus. If we now subject the equilibrium to a small perturb-
ation so that pj = P+ ei, then it can be shown by the same argument as
before that in the next generation

e = e+2PjQjwB[L'wjej—ccjwje] (19)
where

= a[l + (P —Q,1)D1] (20)

and where cc is defined as in Equation 17 with the appropriate subscripts.
The matrix C which determines stability can therefore be written down and
its latent roots evaluated in any particular case, but it will be necessary to
use a rather heuristic approach to arrive at an approximate general solution.

To consider the conditions for stability under stabilising selection let us
suppose that two loci, which may be labelled loci I and 2, have the same
effect so that a1 = a2, D1 = D2, P1 = P2; it follows from Equation 19
that

(e—4) = (e1—e2)(l —2P1Q1wcc1B). (21)

If B is negative there can only be stability if cc1 is negative, which is the same
L2
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condition as in the case when all loci have equal effects. From considerations
of continuity it is clear that a similar condition must be satisfied if two loci
have nearly the same effects. It can be concluded that an approximate
condition for stability under stabilising selection is that j is negative at all
loci, which implies overdominance at all loci.

Under disruptive selection let us consider the stability of L'wtei. It
follows from Equation 19 that

= L'wtet + B{EwiejL'2Pt Qjw — Ew . 2PjQjwscj}. (22)

The quantity 2P Qw is the contribution of the ith locus to the additive
genetic variance. If we define & as a weighted average of the 's, the weights
being equal to 2P Qw, and if we assume as an approximation that wiet is
uncorrelated with 2P Qw;, it follows that

Ew14+Ewe {l+Bh2v(l_)}. (23)

It is therefore suggested that when B is positive an approximate criterion
for stability is that & > JV. Since large values of are likely to receive
rather small weights in calculating the weighted average , stability is even
less likely to be attained than when all loci have equal effects.

4. SUMMARY

1. The effect of selection on a locus with a small effect on a metric
character is formulated in general terms for an arbitrary fitness function.

2. It is shown that equilibria for polygenic characters are usually unstable
under either stabilising or disruptive selection.

3. Under stabilising selection there cannot be stability unless there is
overdominance at all loci; under disruptive selection there can only be
stability when the ratio of dominance to additive genetic variance is high.
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