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1. THE PROBLEM

THE genetical description and analysis of continuous variation depends,
not on the isolation and measurement of the effects of single gene
differences in the classical Mendelian fashion, but on the biometrical
interpretation of the various statistics derivable from observation of
related individuals in terms of parameters measuring the non-heritable
and the different heritable components of variation. Two processes
are therefore involved in such an analysis; first the description of the
available statistics in terms of the genetica quantities, components of
variation as they have been termed, of which use is to be made; and
secondly the extraction of these quantities from the values observed
for the statistics.

The genetical descriptions of the statistics obtained by observations
of individuals standing in various degrees of relationship rests on
the assumption that the heritable determinants of continuous variation
are nuclear genes transmitted from parent to offspring on the chromo-
somes, segregating and recombining just as the genes of major eflèct.
This assumption has been fully validated by experiment and descrip-
tions have been formulated in terms of components representing the
effects of additive gene action, dominance, interaction of non-allelic
genes and genotype-environment interactions (Mather, 1949; Mather
and Vines, 1952; Lerner, 1950; Haymari and Mather, 1955; Mather
and Jones, 1958; Kenipthorne, 1957; Falconer, 1960). The only
remaining divergence is in respect of the notation for representing
these components of variation and the composition of the various
statistics in terms of them. The components are composite, each
representing the summed effects of all the genes which can contribute
to it, and are derived by theoretical consideration. In no case yet
has the check been made of comparing the values of the components
derived by biometrical analysis in the now familiar way with their
values as expected from the measurement and summation of the
effects of the individual genetic differences. Neither the desirability
nor the difficulty of making such a check requires stressing.
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effects of the individual genetic differences. Neither the desirability
nor the difficulty of making such a check requires stressing.
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The estimation of the various components from constellations of
observed statistics has been approached in several ways, of which
the most generally applicable and useful is by a form of least squares
analysis yielding estimates of the several components of variation.
In its crudest form, as developed by Mather (i), this consists
of fitting Constants for the various genetical Components by mini-
mising the sum of squares of the residuals of the several statistics,
given equal weights. This process is simple but is open to several
objections, especially that it takes regard, neither of the differences
in precision with which the various statistics are observed experi-
mentally, nor of the correlations that must exist between the
values obscrved for them. Furthermore the standard errors which
are obtained for the estimated values of the parameters are not fully
reliable (Nelder, 1953). Recently Nelder (1960) and Hayman (1960)
havc devised a method of estimation which does pay regard to both
the differences in precision and the correlation of the statistics forming
the raw materials of the analysis, and which leads to more reliable
values for the standard errors as well as a more informative test of
goodncss of fit. Involving as it does the use of weights which depend
on the values of the parameters themselves, this method necessarily
requires iterative calculations which can make prohibitively heavy
demands wherc only a desk calculator is availablc. The task is,
however, well suited to the use of an electronic computer and it was
decided to carry out an analysis in this way both for its intrinsic
content and for the test it would afford of the reliability of the estimates
arrived at by the earlier and simpler mcthod of estimation. The
statistical aspects of this estimation will be considered in this first paper
and the genetical aspects in a second one.

2. THE EXPERIMENT

The experiment was based on two inbred lines of Drosophila
melanogaster, Samarkand (S) and the Birmingham line of Oregon (B),
the character used being the number of sternopleural chaet. In
the experiment with which we are concerned, the lines were crossed
reciprocally and F2's were raised from the resulting F1's. From these
Fg's, pair matings were made to the number of 346 from the cross
B>< S and 364 from its reciprocal, S >< B. The resulting families are
of the types which Mather (i) has called BIPS.

An experiment of this magnitude must obviously be spread over
time and the BIPS were raised in groups of up to 30 or 40 at a time.
On each occasion that a group of BIPS was being raised, up to 3 F2's
(in the case of B < S) or 4 (in the case of S >< B) were also raised
together with a single culture of each parental line and of each of the
reciprocal Fr's. Parents, F1's and F2's wcre raiscd also at times when
no BIPS were produced. The total numbers of culturcs of P's, Fr's
and F0's appear in table i. The chaet were counted on to females
and io males from each culture in these generations and also in the
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The estimation of the various components from constellations of
observed statistics has been approached in several ways, of which
the most generally applicable and useful is by a form of least squares
analysis yielding estimates of the several components of variation.
In its crudest form, as developed by Mather (ig), this consists
of fitting constants for the various genetical components by mini-
mising the sum of squares of the residuals of the several statistics,
given equal weights. This process is simple but is open to several
objections, especially that it takes regard, neither of the differences
in precision with which the various statistics are observed experi-
mentally, nor of the correlations that must exist between the
values observed for them. Furthermore the standard errors which
are obtained for the estimated values of the parameters are not fully
reliable (Nelder, 1953). Recently Nelder (ig6o) and Hayman (1960)
have devised a method of estimation which does pay regard to both
the differences in precision and the correlation of the statistics forming
the raw materials of the analysis, and which leads to more reliable
values for the standard errors as well as a more informative test of
goodness of fit. Involving as it does the use of weights which depend
on the values of the parameters themselves, this method necessarily
requires iterative calculations which can make prohibitively heavy
demands where only a desk calculator is available. The task is,
however, well suited to the use of an electronic computer and it was
decided to carry out an analysis in this way both for its intrinsic
content and for the test it would afford of the reliability of the estimates
arrived at by the earlier and simpler method of estimation. The
statistical aspects of this estimation will be considered in this first paper
and the genetical aspects in a second one.

2. THE EXPERIMENT

The experiment was based on two inbred lines of Drosophila
melanogaster, Samarkand (S) and the Birmingham line of Oregon (B),
the character used being the number of sternopleural chaet. In
the experiment with which we are concerned, the lines were crossed
reciprocally and F2's were raised from the resulting F1's. From these
F,'s, pair matings were made to the number of 346 from the cross
B x S and 364 from its reciprocal, S >< B. The resulting families are
of the types which Mather has called BIPS.

An experiment of this magnitude must obviously be spread over
time and the BIPS were raised in groups of up to 30 or 40 at a time.
On each occasion that a group of BIPS was being raised, up to 3 F2's
(in the case of B < S) or 4 (in the case of S >< B) were also raised
together with a single culture of each parental line and of each of the
reciprocal Fr's. Parents, F1's and F,'s were raised also at times when
no BIPS were produced. The total numbers of cultures of P's, F1's
and F0's appear in table i. The chaet were counted on 10 females
and io males from each culture in these generations and also in the
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BIPS. Conditions were held as constant as possible over the period
of the experiment and an analysis of variance of the F2 results showed
that the mean number of chaetze did not vary significantly more
between cultures raised on different occasions, than between cultures

TABLE i

Total numbers of cultures scored, and numbers on each occasion

Parents F1's F's BIPS
Generation ,_—__.. ,—.---—.—--.- ,.—.-. _.—

B S BxS SxB BxS SxB BxS SxB

Total No. . 29 29 29 29 44 49 346 364

Per occasion . I I 1 1 1-3 1-4 1-30 1-37

raised at the same time. A similar test was not possible with the
results from the parents and F1's, but no trend of the means could be
observed graphically with time in these. There is thus no evidence
that the spread of the experiment over time introduced any additional

TABLE 2

Mean and variance of parents, F1's and F2's

No. of
cultures Mean

Mean variance
within

cultures
d.f.

Variance of
mean of io

over occasions
d.c.

Parents
B

S

29

29

224724
229310

18'2034
185207

31376
29628

L8333
19374

261
261

261

261

06940
05182

04196
02385

28
28

28
28

F1
BxS

SxB

F2
BS

SB

29

29

195828
204586

201172
203138

22331
20184

26927
18372

261

261

261
261

03272
03354

02419
04618

28
28

28
28

33

37

197091
201205

198224
204592

48660
3.1475

4.4303
4.1654

297
297

333
333

05033 32
04139 32

05223 36
05725 36

source of variation. The distinction between occasions has therefore
been omitted from account in the analysis of the results.

The overall mean numbers of chaet and variances, both of
individuals within cultures and of means between cultures, are given
for P's F1's and F2's in table 2, together with the numbers of degrees
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raised at the same time. A similar test was not possible with the
results from the parents and F1's, but no trend of the means could be
observed graphically with time in these. There is thus no evidence
that the spread of the experiment over time introduced any additional

TABLE 2
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source of variation. The distinction between occasions has therefore
been omitted from account in the analysis of the results.

The overall mean numbers of chaet and variances, both of
individuals within cultures and of means between cultures, are given
for P's F1's and F2's in table 2, together with the numbers of degrees
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of freedom on which the variances are based. The variances of
parents and F1's must obviously be non-heritable and provide the
direct estimates of the non-heritable components of variation E1 (of
individuals within cultures) and E2 (of means between cultures) used
in the analysis. It will be seen that males always showed lower means
and generally showed higher variances than did their sisters. The
B parent also showed higher variances than S and the F1's which,
however, did not differ markedly or consistently among themselves.
This difference in variances was accommodated by estimating E1 and

as the sum of one quarter of the variance of each parental line
and one half of the variance, of the corresponding F1.

Strictly the BIPS should be raised by random pair matings among
F2 flies and this course was followed at first. For some reason, however,
a correlation appeared between the chaeta counts of the male and

TABLE 3

Frequency distribution of F2

Cross 15 i6 17 i8 19 20 21 22 23 24 25 26 Total

BS ' . . I 5 9 12 19 21 14 8 7 2 I I 100
. I 7 14 i6 i8 15 6 2 100

SB d' •
.

.

. 2
8

I 1

13
7

21 156 20 13
22

14
II

7
12

3
4

...
4

I
...

100
100

female parents taken. It was therefore decided deliberately to make
up matings with frequencies corresponding approximately to those
expected by combinations of the frequencies with which males and
females were observed to fall in the various chaeta classes of the F2's.
The frequency distributions of chaeta number in ioo flies of each of
the F2's are shown in table 3 and the distribution of the matings used
to raise BIP families in table 4.

The chaeta frequency distributions used in determining the mating
frequencies were taken from 10 of the early F2 families. The counts
from these cultures are excluded from the calculations of the variances
of individuals within F2 cultures (V12) used in both the analyses to
be described and also from the variances between F2 cultures used
only in the second analysis. In addition one F2 culture from B xS

and two from S xB were omitted as the incubator temperature
fluctuated unduly during the time they were being raised.

The BIPS yield, of course, values for overall mean number of
chaet and also variances within (V23) and between (V13) cultures,
as well as the covariance of BIP means with the parental averages
(W1823). The notation is that of Mather and Vines (i 952). Scaling
tests using parental F1, F2 and BIP means were carried out on males
and females separately by the method of Cavalli (i). These
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of freedom on which the variances are based. The variances of
parents and F1's must obviously be non-heritable and provide the
direct estimates of the non-heritable components of variation E1 (of
individuals within cultures) and E2 (of means between cultures) used
in the analysis. It will be seen that males always showed lower means
and generally showed higher variances than did their sisters. The
B parent also showed higher variances than S and the F1's which,
however, did not differ markedly or consistently among themselves.
This difference in variances was accommodated by estimating E1 and

as the sum of one quarter of the variance of each parental line
and one half of the variance of the corresponding F1.

Strictly the BIPS should be raised by random pair matings among
F2 flies and this course was followed at first. For some reason, however,
a correlation appeared between the chaeta counts of the male and

TABLE 3

Frequency dis€rilnaion of F1

Cross 15 i6 17 i8 19 20 21 22 23 24 26 Total

BS .
.

. 1 5
1

9
7

12

14
19
i6

21
21

14
i8

8

15
7
6

2
2

1 1 ioo
100

SB d' •
.

.

.
i
2

8
1 1

13
7

21 15t6 20 13
22

'4
II

7
12

3 ... I
...

100
100

female parents taken. It was therefore decided deliberately to make
up matings with frequencies corresponding approximately to those
expected by combinations of the frequencies with which males and
females were observed to fall in the various chaeta classes of the F2's.
The frequency distributions of chaeta number in i oo flies of each of
the F2's are shown in table 3 and the distribution of the matings used
to raise BIP families in table 4.

The chaeta frequency distributions used in determining the mating
frequencies were taken from 10 of the early F2 families. The counts
from these cultures are excluded from the calculations of the variances
of individuals within F2 cultures (V1r2) used in both the analyses to
he described and also from the variances between F2 cultures used
only in the second analysis. In addition one F2 culture from B xS

and two from S xB were omitted as the incubator temperature
fluctuated unduly during the time they were being raised.

The BIPS yield, of course, values for overall mean number of
chaet and also variances within (V253) and between (V153) cultures,
as well as the covariance of BIP means with the parental averages
(W1823). The notation is that of Mather and Vines (i9). Scaling
tests using parental F1, F2 and BIP means were carried out on males
and females separately by the method of Cavalli (1952). These
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indicated the presence of interaction in females (Xj 25.27) and
even more strongly in the males (x = 48.57). As will be seen in
the later paper these interactions were neither very large as compared

TABLE 4

Chaeta number in the F2 parents of BIP families

X5

x6

2

2 3

2

54 2 2

3

0
8

4

24
3

4
2

3

6
3

8
7

22

2

2

3
2

2
3

3
3

2

X7

x9

20

21

22

23

24

25

Total

5
3

7
7

8
9

7
x0

6
5

2
6

2

x0

5

12

X4
x6

xx
x6

x0
8

4
9

3

3

2

2
2

3

2

2

5
5

8
5

6
x0

5
3

2
3

2

X3
4

X2
8

x5
x0

X3
X3

xo
6

4
6

2

3

5
3

6
8

5
x0

4
xx

3
4

2
6

2

2

5
2

5
4

4
4

4
6

2
3

3

xo
8

9
xo

6
6

3
6

2

2

55
25

6x
59

72
70

6x
83

47
38

x8
42

74
0

x8

2

3 5

7
4

X4
x5

34
33

9 6
46 76

73 46 29
46 47

22
26

7
x0

6
3

4
2

346
364

The figures in the body of the table are the numbers of matings with male parent
having the chaeta number as at the head of the column and female parent the chaeta
number as in the left margin. The upper figure in each cell is the number of matings from
the F of B x S, and the lower figure that from the F2 of S x B.

with the main components of variation nor of a kind that could easily
be scaled out, and so no rescaling was in fact attempted.

The statistics available for estimating the components of variation
are collected together in table 5. They are given for sexes and
reciprocal crosses separately, and for the whole experiment.

The figures are as consistent as could be expected except for the
females of B x S. These give a very high value for W123 accompanied
by low values for V1F2 and V3. Furthermore, the values for the
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indicated the presence of interaction in females (Xj 2527) and
even more strongly in the males (x = 48.57). As will be seen in
the later paper these interactions were neither very large as compared

TABLE 4

Chaeta number in the F, parents of BIP families

Males
15 17 19 20 21 22 23 24 25 26 Total

Females

15 ••. ... 0
I I I 1 2 ... 8

I I
2 I 4

17 I 2 3 4 5 3 2 2 1 1 24
1 I I 3

2 34 51013 6 s... 2... 55
I 2 3 5 43 3 2 1... I 25

19 1 3 5 71112 865 2... 1 6i2 25 712 8 7 8421 1 59

20 2 2 8 8141510 54 13... 72
1 3 5 g i6 10 8 10 4 3 1 ... 70

21 1 3 6 71113 9 44 1... 2 6i
1 3 10 10 i6 13 10 II 6 2 1 ... 83

22 1 1 5 6 10 10 6 3 2 2 1 47
2 3 5 8 6 6 ... 38

23 1 2 2 4 4 3 2
2 3 6 6 6 6 3 i ... 42

24 ... 1 1 1 I 1 2 ... 7
1 2 2 3 2 2 1 1 14

25 0
1 1 3 5 3 2 2 1 i8

Total 7 14 34 39 65 73 46 29 22 7 6 346
4 15 33 46 76 56 46 47 26 10 3 2 364

The figures in the body of the table are the numbers of matings with male parent
having the chaeta number as at the head of the column and female parent the chaeta
number as in the left margin. The upper figure in each cell is the number of matings from
the F3 of B x S, and the lower figure that from the F, of S x B.

with the main components of variation nor of a kind that could easily
be scaled out, and so no rescaling was in fact attempted.

The statistics available for estimating the components of variation
are collected together in table 5. They are given for sexes and
reciprocal crosses separately, and for the whole experiment.

The figures are as consistent as could be expected except for the
females of B x S. These give a very high value for W123 accompanied
by low values for V12 and V3. Furthermore, the values for the
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B xS females are not merely inconsistent with those for the other three
parts of the experiment, they are inconsistent with one another. Thus
W123, whose expectation is D, falls short of that of V1, whose
expectation is D+H+E2, by only 01377, a value which is less
than one third the direct estimate of E2. Again W123 is only i 8289
less than V23 whose expectation includes E1, of which the direct
estimate is 2 4906. This set of results must therefore be regarded as

TABLE 5

Statistics used in estimation of the components of variation and, in brackets, the degrees of
freedom on which they are based. The expectation in terms of the components of variation
is given for each statistic

Statistics BS BS SB SB Overall
Average

V1F2 .
D+H+E1

4.8660
(297)

31475
(297)

44303
(333)

4I654
(333)

4.1606

Vi3
1D+1H+E,

io6y3 II92I I2OO2
(363)

II960
(363)

11648

Wi2s . .
D

10544 05376(6) 07318
(363)

07236

V2
1D+R+E1

32767
(3ii4)

28733
(3114)

33076
(3276)

31315
(3276)

31491

. •68
(522)

24906(2) 22630(2) 18873(2) 23316

E2 . . . 04881
(6)

04268
(6)

03308
(6)

03502
(6)

03990

suspect on genetical grounds. The other three sets of results are not
open to any such suspicion. The consequences of these inconsistencies,
for which no reason can be advanced, will be seen in the results of the
analysis.

3. THE UNWEIGHTED ANALYSIS

The analysis by the crude unweighted procedure follows the same
pattern as the example described by Mather (1949, pages 66-68 and
95-96) and his matrices were used in the calculations. It should be
observed that this analysis is strictly valid only where all the genetic
differences follow an autosornal pattern of inheritance, whereas in fact,
the sex chromosomes must be expected to contribute to the differences
between B and S. If we neglect any possible effect of the Y chromo-
some, the males cannot be heterozygous for any differences, so that in
segregating generations they will contribute less to H and more to
D than the assumption of autosomal inheritance allows. The females
of a family receive one common X from their fathers and so will
always give backcross ratios for any segregating gene. They will
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B x S females are not merely inconsistent with those for the other three
parts of the experiment, they are inconsistent with one another. Thus
W123, whose expectation is D, falls short of that of V1, whose
expectation is D+H+E2, by only 01377, a value which is less
than one third the direct estimate of E2. Again W123 is only i P8289
less than V23 whose expectation includes E, of which the direct
estimate is 2 4906. This set of results must therefore be regarded as

TABLE 5

Statistics used in estimation of the components of variation and, in brackets, the degrees of
freedom on which they are based. The expectation in terms of the components of variation
is given for each statistic

Statistics BS BS SB SB

Vip, .
D+H+E1

48660
(297)

3,1475
(297)

44303(3) 41654() 41606

V183 . .
1D+aH+E,

10673 P1921
(345)

P2002
(363)

iig6o
(363)

11648

W152, . .
kD

05797
(345)

10544 05376
(363)

07318
(363)

07236

V255 . .
0+R+E 32767

(r14)
28733
(3114)

33076
(3276)

31315
(3276)

31491

E1 . . . 26854
(522)

24906
(522)

22630
(522)

18873
(522)

23316

E2 . . . o•88i
(56)

04268
(56)

03308
(56)

03502
(56)

03990

suspect on genetical grounds. The other three sets of results are not
open to any such suspicion. The consequences of these inconsistencies,
for which no reason can be advanced, will be seen in the results of the
analysis.

3. THE UNWEIGHTED ANALYSIS

The analysis by the crude unweighted procedure follows the same
pattern as the example described by Mather (1949, pages 66-68 and
95-96) and his matrices were used in the calculations. It should be
observed that this analysis is strictly valid only where all the genetic
differences follow an autosornal pattern of inheritance, whereas in fact,
the sex chromosomes must be expected to contribute to the differences
between B and S. If we neglect any possible effect of the Y chromo-
some, the males cannot be heterozygous for any differences, so that in
segregating generations they will contribute less to H and more to
D than the assumption of autosomal inheritance allows. The females
of a family receive one common X from their fathers and so will
always give backcross ratios for any segregating gene. They will
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therefore, on the average contribute less to D and more to H than the
autosornal formula allows. There is thus some tendency towards
compensation between the sexes and in any case, as will be seen from
the later paper, the contribution of the X chromosome to the parental
difference, taken as a unit, was not large. The use of autosomal
formul should not therefore lead to any major disturbances in the
estimates of the components of variation and indeed the difficulty it
introduces must be considerably less than that springing from the
unexplained inconsistencies of the statistics noted above.

Since the available statistics include V23, a test for the effects of
recoverable linkage on the variation is possible as this statistic is of
the second rank in relation to recombination, whereas V1F2, V13

TABLE 6

Analyses of variance for linkage. The entries are mean squares

Data Linkage
i df

Remainder
i df \'R

(per cent.)

BS
BS
SB
SB

Overall

0386K
00949
00510
00057

00275
00023
00015
00034

140400
412609
340000
1•6765

...
105
...
...

00204 00012 170000 ...

and \V13 are of the first rank (Mather, 1949; Mather and Vines,
1952. If, therefore, recombination is materially affecting the com-
ponents of variation the D and H of V23 will not be the same as the
D and H of the other statistics. Two analyses are therefore conducted,
the inclusive which brings in V3 and the exclusive which omits it,
so that in effect it becomes its own expectation and thus accommodates
any change in the values of D and H. The comparison of the expecta-
tions, found from inclusive and exclusive estimates of the components,
vith the values observed for the statistics, allows an analysis of variance
to be carried out in which a mean square for linkage is compared with
a mean square for residual variation.

Since six statistics are available and four components of variation
are estimated in the inclusive analysis, two degrees of freedom remain
for assessing the variation arising from differences between observa-
tion and inclusive expectation. The exclusive analysis in effect
estimates five parameters, leaving one degree of freedom for residual
variation. The difference between these two mean squares springs
from linkage effects (or from interactions indistinguishable from
them—see Opsahl (1956)), so that the linkage item in the analysis of
variance takes one degree of freedom, the residual variation in the
analysis being the residual variation of the exclusive calculations.
The analyses of variance are set out in table 6, for the males and
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therefore, on the average contribute less to D and more to H than the
autosomal formula allows. There is thus some tendency towards
compensation between the sexes and in any case, as will be seen from
the later paper, the contribution of the X chromosome to the parental
difference, taken as a unit, was not large. The use of autosomal
formu1 should not therefore lead to any major disturbances in the
estimates of the components of variation and indeed the difficulty it
introduces must be considerably less than that springing from the
unexplained inconsistencies of the statistics noted above.

Since the available statistics include V23, a test for the effects of
recoverable linkage on the variation is possible as this statistic is of
the second rank in relation to recombination, whereas VIFI, V13
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and \V13 are of the first rank (Mather, 1949; Mather and Vines,
1952. If, therefore, recombination is materially affecting the com-
ponents of variation the D and H of V3 will not be the same as the
D and H of the other statistics. Two analyses are therefore conducted,
the inclusive which brings in V3 and the exclusive which omits it,
so that in effect it becomes its own expectation and thus accommodates
any change in the values of ]D and H. The comparison of the expecta-
tions, found from inclusive and exclusive estimates of the components,
with the values observed for the statistics, allows an analysis of variance
to be carried out in which a mean square for linkage is compared with
a mean square for residual variation.

Since six statistics are available and four components of variation
are estimated in the inclusive analysis, two degrees of freedom remain
for assessing the variation arising from differences between observa-
tion and inclusive expectation. The exclusive analysis in effect
estimates five parameters, leaving one degree of freedom for residual
variation. The difference between these two mean squares springs
from linkage effects (or from interactions indistinguishable from
them—see Opsahl (1956)), so that the linkage item in the analysis of
variance takes one degree of freedom, the residual variation in the
analysis being the residual variation of the exclusive calculations.
The analyses of variance are set out in table 6, for the males and
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females of the two reciprocals separately and for the combined data.
There is a suggestion of linkage effects in the B xS females, whose
results however we have judged to be suspect on other grounds. The
overall results give no significant indication of linkage effects. How-
ever, if we pool over the individual observations we can obtain a
variance ratio of i 5o for four and four degrees of freedom which has
a Po 0i. This would seem to imply some degree of heterogeneity
in respect of linkage between the four parts of the experiment. There
is therefore no good evidence of consistent disturbances due to linkage
and we have taken the inclusive estimates of the components, obtained
ignoring linkage effects, for further consideration.

The estimates are set out in table 7. Two points require comment.
The standard errors shown in the body of the table are derived from

TABLE 7

Estimates of the components of crosses from the unweighted inclusive analysis

BS BS SB SB Overall
average

Pooled
s.c.

D
H
E1
E2

28813±16010
P8795±3957I
246I6+044I7
O3588±O3455

38534±O7761
—45432±19184

25363+O2I42
o4698+o 1676

25123±05704
33469+14111
22I75+OI575
O3469±O 1233

29550±02387
30118+05902
I 8834±OO656
O3O96+OO52O

3048O±03659
09550+09043
23I25+0I0IO
O371 I +OO787

+09420
+23284
+O26OO

The standard errors derived from the error variances in the unweighted analyses are
shown by each statistic, and those for the pooled estimates of error are given in the
right-most column (see in text).

the differences between the values observed for the six statistics and
the values expected using the inclusive estimates of the four com-
ponents of variation. The residual variation, and by derivation the
standard errors of the components, are assessed from two degrees of
freedom in each of the four parts of the experiment as noted above.
The standard errors should therefore be used with corresponding
caution. Since, however, the four parts of the experiment may be
regarded as affording independent values of the six statistics and
independent estimates of the four components their sum of squares
for residual variation may be pooled to yield a combined estimate of
residual variation based of course on 2 X 4 = 8 degrees of freedom.
Common standard errors, applying to the estimated components
from all four parts of the experiment have been calculated from this
combined residual mean square and are shown at the end of the
table. The overall estimates of each component is virtually the mean
of the four estimates for the four parts of the experiment and so will
take therefore a standard error half that of the common standard error
applying to each of the four individual estimates.

The second point requiring comment is the difference between the
components as estimated from the B xS females as compared with

522 COOKE, JONES, MATHER, BONSALL AND NELDER

females of the two reciprocals separately and for the combined data.
There is a suggestion of linkage effects in the B xS females, whose
results however we have judged to be suspect on other grounds. The
overall results give no significant indication of linkage effects. How-
ever, if we pool over the individual observations we can obtain a
variance ratio of i 50 for four and four degrees of freedom which has
a Po •oi. This would seem to imply some degree of heterogeneity
in respect of linkage between the four parts of the experiment. There
is therefore no good evidence of consistent disturbances due to linkage
and we have taken the inclusive estimates of the components, obtained
ignoring linkage effects, for further consideration.

The estimates are set out in table 7. Two points require comment.
The standard errors shown in the body of the table are derived from

TABLE 7

Estimates of the components of crosses from the unweighted inclusive analysis

BS BS SB SBc Overall
average

Pooled
se.

D
H
E1
E5

288I3±P6O1O
187g5±3957z
246I6±04417
03588±03455

38534±o776I
—45432±19184
25363±02142
04698±O 1676

25123±05704
33469±P4111
22175±01575
O3469±O1233

29550±02387
30118±05902
x•8834±o•o656
03096±00520

30480±03659
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23I25±010IO
037!1±00787

The standard errors derived from the error variances in the unweighted analyses are
shown by each statistic, and those for the pooled estimates of error are given in the
right-most column (see in text).

the differences between the values observed for the six statistics and
the values expected using the inclusive estimates of the four com-
ponents of variation. The residual variation, and by derivation the
standard errors of the components, are assessed from two degrees of
freedom in each of the four parts of the experiment as noted above.
The standard errors should therefore be used with corresponding
caution. Since, however, the four parts of the experiment may be
regarded as affording independent values of the six statistics and
independent estimates of the four components their sum of squares
for residual variation may be pooled to yield a combined estimate of
residual variation based of course on 2 X 4 = 8 degrees of freedom.
Common standard errors, applying to the estimated components
from all four parts of the experiment have been calculated from this
combined residual mean square and are shown at the end of the
table. The overall estimates of each component is virtually the mean
of the four estimates for the four parts of the experiment and so will
take therefore a standard error half that of the common standard error
applying to each of the four individual estimates.

The second point requiring comment is the difference between the
components as estimated from the B xS females as compared with



COMPONENTS OF CONTINUOUS VARIATION 123

their brothers and the two sexes from S xB. As would be expected
from the high covariance and the low variances B x S females yielded
as compared with the rest of the experiment, they give a high value
for D while H appears negative and this negative value approaches
significance (t[2] = 2 3683 and P = o -o 1 using the individual
estimate of its standard error, and t81 = 19512 and P = oI-oo5
using the common standard error based on the pooled residual
variation). The estimates from the S xB females and the two groups
of males are both reasonable and consistent among themselves. Even
the difference of H from the B x S males (i88) on the one hand
and the average H of the sexes from S xB (3.18) is not significant.
Our view that the B xS females are aberrant in the data they yielded
is thus further strenthened.

4. WEIGHTED ANALYSIS

The unweighted analysis is simple to use in that the matrices it
involves may be inverted once and for all (Mather, ig.g), but it
takes no account either of the differences in precision with which the
various statistics are found experimentally or of the correlations
which must exist between the values observed for them.

It may be expected to extract the greater part of the information
from the data, but in so far as there is any loss of efficiency, the final
test of goodness of fit between observation and expectation must be,
to that extent, suspect. Furthermore, the standard errors it yields
for the estimates of the components of variation will be unreliable,
partly because of this loss of efficiency and partly because any positive
correlations among the initial statistics will tend to cause them to be
underestimated. Unbiased estimates of the standard errors applicable
to estimates obtained by unweighted analysis could be found empirically
where the experiment is replicated, by obtaining separate estimates of
D, H and E from each section of the experiment and deriving the
standard errors of the components from the variation between these
replicated estimates (Nelder, 1953). The numbers of degrees of
freedom available for finding these empirical standard errors must,
however, be small unless the sub-division of the experiment is extreme.

An analysis in which the statistics are weighted to take account
of their precisions and their correlations, will overcome these difficulties
and Nelder (1960) and Hayman (196o) have independently shown
how the weights may be derived and the analysis carried out. Full
accounts of the method will be found in these papers.

In the unweighted analysis certain genetic sampling terms which
depend on the size of family, plot or culture, as the case may be, and
enter into the expectations of statistics such as the variance of BIP
means, are neglected. In the weighted analysis no further com-
plication arises from the inclusion of these terms and also of the
variance ofF2 culture means as an additional statistic. The comparison
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and Nelder (ig6o) and Hayman (196o) have independently shown
how the weights may be derived and the analysis carried out. Full
accounts of the method will be found in these papers.

In the unweighted analysis certain genetic sampling terms which
depend on the size of family, plot or culture, as the case may be, and
enter into the expectations of statistics such as the variance of BIP
means, are neglected. In the weighted analysis no further com-
plication arises from the inclusion of these terms and also of the
variance ofF2 culture means as an additional statistic. The comparison
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between weighted and unweighted analysis is thus slightly complicated,
but in the experiments reported here much the greater part of the
difference in precision is due to the weighting itself rather than to
these other refinements.

For most purposes it is sufficient to calculate the weights and
correlations from a model which assumes that the character under
consideration is normally distributed in the various families, and that
the correlations are normal. For example, if v0 = V1F2, V1 = V13,
w = W123, based on N degrees of freedom and v2 = V23 based on
N' degrees of freedom and V0, V1, W and V2 denote the corresponding
expectations, this gives for the sampling variance matrix of the
observed variances and covariances (v0, v1, w and v2)

2V/N 2W2/N 2V0W/N 0

2W2/N 2V/N 2V1W/N 0

2V0W/N 2V1W/N (W2+V0V1)/N 0
o o o

Nelder (1960) has considered, in certain cases, how far this approxi-
mate variance matrix represents the true sampling variances and
covariances of the observed statistics and has found it satisfactory, at
least when the number of genes is not too small. However, V0, V1,
W and V2 are not known in advance, but have to be estimated from
the analysis. An iterative process is therefore necessary starting with
the empirical values v0, v1, w and v2. Such a process has been carried
out by Hayman (1960) but is clearly a very heavy operation unless
an electronic computer is available.

The non-random choice of matings among the F2's in the Drosophila
experiment must presumably have reduced the variance of W123
and also the effective number of degrees of freedom in \Ti3, but it
was not practicable to correct for this in the weighted analysis. The
fact that, as we shall see, the total residual X2 was 7449 with 8 d.f.
suggests that the weights were not seriously wrong.

The iterative weighted least squares procedure has now been
programmed for the Elliott 401 computer at Rothamsted. The
programme is sufficiently general to deal with most, if not all, cases
which are likely to arise in practice. For example, the statistics may
fall into groups such that any pair belonging to the same group are
correlated, but statistics in different groups are uncorrelated. This
is the most frequent situation, a group of statistics consisting of the
variances of a set of variables and all possible correlations between
paits of these variables. The details of the procedure are as set out
in Nelder (i6o) except that the rules for forming the variance matrix
of the statistics have been generalised, but the correction for kurtosis
has not been included.

The computer is able to handle a number of observed variances
and covariances considered as a n>< i column vector x, and a number
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but in the experiments reported here much the greater part of the
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The non-random choice of matings among the F3's in the Drosophila
experiment must presumably have reduced the variance of W13
and also the effective number of degrees of freedom in \T153, but it
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fact that, as we shall see, the total residual x2 was 7 449 with 8 d.f.
suggests that the weights were not seriously wrong.

The iterative weighted least squares procedure has now been
programmed for the Elliott 401 computer at Rothamsted. The
programme is sufficiently general to deal with most, if not all, cases
which are likely to arise in practice. For example, the statistics may
fall into groups such that any pair belonging to the same group are
correlated, but statistics in different groups are uncorrelated. This
is the most frequent situation, a group of statistics consisting of the
variances of a set of variables and all possible correlations between
paits of these variables. The details of the procedure are as set out
in Nelder (i6o) except that the rules for forming the variance matrix
of the statistics have been generalised, but the correction for kurtosis
has not been included.

The computer is able to handle a number of observed variances
and covariances considered as a n>< i column vector x, and a number
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of estimated parameters considered as a m xi column vector 0 where
ni6, mio and nmI28. The greater part of the calculation
consists of standard operations on matrices. The only special feature
of the programme is the method used in providing all the information
required for the calculation of the variance matrix V of x.

Suppose there are s associated sets of variances and covariances,
the tth set having v variances, c covariances and N degrees of
freedom. Form a symmetric matrix Z by placing all the variances
in the diagonal positions and each covariance in the same row and
column as its associated variances. Let x, the ith element of the
observation vector x, be in the r,th row and the cth column above the
diagonal of the Z matrix.

Then

cov(x, xi.) = (Xr +XrcXrc)INi

where Xk is the expected value of Xk as estimated from the previous
cycle of the iteration. In the first cycle Xk = Xk.

In order to economise in storage space, the Z matrix is stored in
the computer as the n x i column vector x and a nx i position vector p.
The ith element of p contains in packed form, the position of x in
the Z matrix and also additional information which enables the
covariance of; and x• to be either calculated using the above formula
or to be set to zero. (This is the usual case when x, and x belong to
different sets.) An approximation to the special case in which a
covariance is present but one of the associated variances is missing
may be made by giving the missing variance an arbitrary value with
a small non-zero fractional value for the degrees of freedom.

(9 —9 i)2The iteration is continued until M9 max ' ' is less
var 9,.

than a prescribed quantity a2, the suffices r, r—i referring to the cycle
of iteration and the output then comprises M9, the total (weighted)
sum of squares, the fitted sum of squares, the estimated expected
values, X, of the variances and covariances, x, the estimated com-
ponents, 9, and the variance matrix of 0. The difference between the
total and fitted sum of squares gives a x2 for goodness of fit.

The principle of the test for the effects of linkage is the same as
in the unweighted analysis, but the actual application is a little
different because in the construction of Mather's (1949) matrices no
allowance was made, in formulating the expectation of V1, for the
small items representing the genetic sampling variation which must
be shown by mean values of finite families. This term reflects the
genetic variation within families and is therefore related to V3.
Neglecting it, as Mather did in the interests of simplicity, allows the
effect of linkage to be accommodated by omitting V from the
analysis, but its inclusion brings the second rank components D2
and H2 into the expectation for V1 which otherwise depends solely
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The principle of the test for the effects of linkage is the same as
in the unweighted analysis, but the actual application is a little
different because in the construction of Mather's (1949) matrices no
allowance was made, in formulating the expectation of V1, for the
small items representing the genetic sampling variation which must
be shown by mean values of finite families. This term reflects the
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effect of linkage to be accommodated by omitting V from the
analysis, but its inclusion brings the second rank components D2
and H2 into the expectation for V1 which otherwise depends solely
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on the first rank components D1 and H1, together of course with E2.
This term for genetic sampling variation was included in the weighted
analysis, so that the linkage effects cannot be accommodated by the
simple exclusion of V283. Rather V283 must be retained and a
quantity G = ID2 +-H must be estimated alongside D1, H1,
E1 and E2, this quantity appearing in V23 and, by virtue of the
sampling term, also in V1. D2 and H2 appear in the same combina-
tions in both statistics so that this inclusion requires and indeed permits
the estimation of only the single additional component G as defined
above. The difference between the two residual x2 one from the
analysis when D and H are assumed to be homogeneous (i.e. when no
allowance is made for linkage, comparable with the inclusive un-
weighted analysis) and the other from the analysis where G is intro-
duced (i.e. where allowance is made for linkage effects comparable
with the exclusive analysis) provides a x2 testing for linkage effects iLl
essentially the same way as the linkage mean square does in the un-
weighted analysis. The only difference is that it provides a test of
significance in its own right without any comparison with the residual
variation unless of course the x2 reflecting this residual variation is
itself significant. In fact from table 8 (a) we obtain by summing the
residual x2 from the four exclusive analyses a value of 7.449 with
8 d.f., which agrees very well with expectation.

The weighted analysis also differed from the unweighted in the
present case in one final respect. In the unweighted analysis, no
account was taken of the variance between the mean of F2 cultures,
the variance ofF2 being found solely from differences among individuals
within cultures. In the weighted analysis V12, found as the variance
within F2 cultures and having the expectation JD + H +E1, was used
exactly as in the unweighted, but an additional statistic was introduced,
found as the variance between the means of F2 cultures, these means
being based on io flies and having the expectation D+H+E0.
The number of components estimated in the weighted analysis was
thus the same as in the unweighted, but the number of statistics used
in providing the estimates was raised from six to seven, so that there
is one extra degree of freedom for residual variation in the weighted
as compared with the unweighted treatment. The inclusive weighted
analysis provides therefore a x2 for 3 degrees of freedom for residual
variation and in the equivalent of the exclusive analysis, one for
2 degrees of freedom, their difference being a x2 testing linkage and
having one degree of freedom just as the linkage mean square had
one degree of freedom in the unweighted treatment.

The results of that test for the effects of linkage can be seen from
the bottom lines of table 8 (a) where are set out the final values oF x2
from the inclusive and exclusive analyses of the four parts of the
experiment. The linkage X1] is significant (P =just over o'o2) in
the B x S males, but not significant in any of the other three, the 2
being indeed rather small for the SxB females. If, however, we
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The number of components estimated in the weighted analysis was
thus the same as in the unweighted, but the number of statistics used
in providing the estimates was raised from six to seven, so that there
is one extra degree of freedom for residual variation in the weighted
as compared with the unweighted treatment. The inclusive weighted
analysis provides therefore a x2 for 3 degrees of freedom for residual
variation and in the equivalent of the exclusive analysis, one for
2 degrees of freedom, their difference being a x2 testing linkage and
having one degree of freedom just as the linkage mean square had
one degree of freedom in the unweighted treatment.

The results of that test for the effects of linkage can be seen from
the bottom lines of table 8 (a) where are set out the final values oF x2
from the inclusive and exclusive analyses of the four parts of the
experiment. The linkage X] is significant (P = just over oo2) in
the B x S males, but not significant in any of the other three, the 2
being indeed rather small for the S x B females. If, however, we
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add all four linkage x2 together to find X] = 9595 the joint evidence
again appears to be strongly suggestive of linkage effects since P is
only just over OO2. As with the unweighted analysis, however, the
evidence is not as good as might seem at first sight since if we take

TABLE 8

The effect of iteration on

(a) The values of x2

BS

Inclusive
(3 cu)

Exclusive
(2 df)

Linkage
(i dl)

SB

After i cycle
After 2 cycles
Final value

Inclusive
(3 df)

65o2
9448
9276

Exclusive
(2df)

3585
4306
4105

Linkage
(idi)

2917
5.142
5171

I 282
1458
P454

0•101
0102
0102

After i cycle
After 2 cycles
Final value

i•i8i
I 356
1352

BS

4413 0750 3663
3685 0592 3093
3638 0582 3056

SB

2738
2733
2676

2632
2725
2660

(b) The estimates, as measured ly \/A19

oio6
ooo8
ooi6

BS
-S

Inclusive Exclusive

SB'
Inclusive Exclusive

After i cycle
After 2 cycles .

0122 0447000 0097
0025 ooo8
0000 0000

After i cycle
After 2 cycles

BSc,
013B 0099
ooo6 0003

SB
,-
0235 0.149
0032 oo15

This table shows the maximum change in an estimate in the next cycle, relative to its
standard error. Thus the entry 0122 implies that the difference between the ist and 2nd
cyck estimates is at most 0122 of its standard error.

the X1] for linkage from the pooled data, comparable with the overall
linkage test in the unweighted analysis (table 6), we find it to be only
07189. This implies that the individual groups of data must be
heterogeneous in the evidence they provide for linkage. It should,
however, be realised that in any case the evidence for linkage in
biometrical genetics is not to be judged in the same way as that from
the linkage experiments of classical genetics, because very loose or
very tight linkage will have little effect in changing the statistics by
which variation is measured in biometrical analyses. In other words,
the failure to detect an effect of linkage biometrically does not imply
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very tight linkage will have little effect in changing the statistics by
which variation is measured in biometrical analyses. In other words,
the failure to detect an effect of linkage biometrically does not imply



128 COOKE, JONES, MATHER, BONSALL AND NELDER

that linkage and recombination in the classical sense are effectively
inoperative in the system: it merely implies that the change recom-
bination produces from generation to generation in the components
of variation is not large, even where its ultimate consequences for,
for example, progress under selection may be far from negligible.

The final values yielded by the weighted analysis for the com-
ponents of variation are set out in table 9. The figures shown are
those from the inclusive analysis and they may therefore be regarded
as- invalidated in the strict sense by the evidence for linkage effects.
They are nevertheless taken so as to facilitate comparisons with the
results of the unweighted analysis where the inclusive results are used.
In any case, the differences between the estimates of D and H from
the inclusive weighted analysis are hardly likely to differ materially
from the values yielded for D1 and H1 by the exclusive operation.

TABLE 9

Eslimates of the components of variation from the weighted inclusive analysis

BS BS SB SB Averaged

D
H
E1
E2

24882
00944±11216
26954±01442
04277

39784±04683
—38713±10596

25636±01338
039 16±00557

23083
28432±10489
22314±01237
03359±00520

2.7499
25477±09983
19525±01104
03166

28970—-0226()
03783±05300
2.36I7Loo648
03695

Comparing the weighted estimates of the components with the un-
weighted, the most striking feature is the close similarity of the two
sets of estimates. The weighted estimates of D and H are, however,
on the whole smaller than the unweighted, the difference being more
noticeable for H than for D. Even so, no comparable figures differ
by amounts even approaching significance and the very same un-
expectedly high value for D and negative value for H are obtained
for B x S females, with this difference, that the value of H is now
significantly negative. Since by definition, H is a quadratic quantity,
a negative value is nonsensical and once again the aberrant nature
of the results from this part of the experiment is emphasised, but this
time even more strongly because of the greater precision of the weighted
analysis. This finding also serves further to emphasise the obvious
point, if further emphasis be needed, that no refinement of statistical
procedure can bring sense out of data which are suspect by genetical
criteria.

One further matter requires discussion before we leave the weighted
analysis. The process of estimation is iterative and while the number
of iterations necessary is relatively unimportant when an electronic
computer is available, it becomes of serious moment should, for any
reason, a weighted analysis be carried out with the aid of no rnorc
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of iterations necessary is relatively unimportant when an electronic
computer is available, it becomes of serious moment should, for any
reason, a weighted analysis be carried out with the aid of no more
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than a desk calculating machine. The x2 values after the first and
second cycles of calculation are shown for comparison with the final
values in table 8(a) and the values of i./M0 which give an upper bound
for the computational error of the estimates as a fraction of their
standard errors, are set out correspondingly in the second part of the
same table. The values of both x2 change very much more between
the results of the first and second cycles than between the latter and
final values and the value of 4./M is quite small. after the second
cycle. The conclusion, already reached by Hayman (1960) from a
different set of data, would seem clear; that while two cycles of
calculation lead to a correct interpretation, a single cycle is unreliable.
It is of interest that the x2 for B x S males actually rises from the first
to the second cycle, no doubt because the weights used initially failed
to give full emphasis to some differences between the seven statistics
from which the estimates are obtained.

The weights used in the first cycle were empirical in that they
were derived from the values actually observed for the statistics. The
weights in the subsequent cycles were derived from the values expectcd
for the statistics on the basis of the last set of estimates of the com-
ponents. If therefore a set of weights approximating better to the
true ones could be found with which to start the first cycle, a single
cycle of the weighted least squares procedure might be sufficient.
Possibly weights derived from the results of the simple unweighted
analysis might serve for this purpose and if that were so, the unweighted
analysis, followed by a single cycle of the weighted, might well be
regarded as a not intolerably heavy task, even where no electronic
computer were available. This possibility has not, however, been
tested.

5. THE EFFICIENCY OF UNWEIGHTED ANALYSIS

The unweighted analysis yielded values for the components of
variation which differ from the weighted estimates to only a minor
extent. There is thus no reason to suspect that the failure to use
weights introduces any material bias into the estimates but one is
led to enquire into the relative efficiency of the unweighted method.
This may be determined by dividing the sampling variance of the
estimates given by the computer by that of the estimate from the
unweighted analysis. The variance matrix of the latter set of estimates,
0, is (Nelder, 1960)

var 0 = (a'a)1a'va(a'a)1 = g'vg
where the matrix g = a(a'a)1 = ac depends only on the generations
included in the experiment and is easy to calculate once the inverse
c-matrix is known.

This procedure gives, of course, the sampling variances expected
for the estimates from the unweighted analysis. The standard errors
shown in table 7 are, on the other hand, observed errors in that they

I
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are derived from the differences between the values observed and
expected for the statistics in the particular experiment. Measured
in this way, these standard errors will themselves be subject to sampling
variation which will be large in cases such as the present where errors
are derived from a very small number of degrees of freedom. The
standard errors of the unweighted estimates actually found in an
experiment will thus fluctuate round the values expected from the
calculations outlined above.

Reference to tables 7 and i o for the Drosophila results, and to
table 12 for others from an experiment with J\Iicotiana, shows this to
be the case in the sense that the unweighted standard errors do not
bear to the weighted the relation that the comparative efficiencies

TABLE jo

Comparative efficiencies of the unweighted estimates of the components from the
four parts of the unweighted inclusive analysis

BS BS SB SB

D
H
E1
E2

93.8
760
8I3
7P4

981
715
77.5
7I4

940
766
859
59.5

963
746
885
57.1

would suggest; sometimes they are larger and sometimes smaller
than would be expected on the basis of the measures of relative efficiency
which, as we have observed, were calculated from the sampling
variation expected for the unweighted estimates obtained from an
experiment of this kind. Such expected sampling variances must
obviously be used in assessing the relative efficiencies for the purpose
of planning future experiments. They are general properties of the
type of experiment and therefore applicable to all experiments of the
kind in question, whereas the relative efficiencies actually observed
in any given experiment necessarily reflect its own special circum-
stances and are therefore applicable to it alone.

Applying this method to the four parts of the experiment gives
the percentage efficiencies set out in table io for the components of
variation in the unweighted analysis. For the two genetical para-
meters D and H and for E1, the efficiency is never less than 75 per cent.
and indeed for D the unweighted analysis sacrifices only about one
part in fourteen of the information that the weighted treatment can
extract. Even for E2, which is of lesser interest than the genetical
parameters, well under half the information is lost.

The relative efficiencies will depend on the structure of the
experiment, that is on the generations included in it, on the statistics
it yields, and on the relative number of individuals and families from
which the various statistics are calculated. It is therefore of interest
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are derived from the differences between the values observed and
expected for the statistics in the particular experiment. Measured
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are derived from a very small number of degrees of freedom. The
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TABLE io

Comparative efficiencies of the unweighted estimates of the components from the
four parts of the unweighted inclusive analysis

BS BS SBd SB

D
H
E1
E2

938
760
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7P4

g8i
715
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71.4

940
766
859
59.5

963
746
885
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would suggest; sometimes they are larger and sometimes smaller
than would be expected on the basis of the measures of relative efficiency
which, as we have observed, were calculated from the sampling
variation expected for the unweighted estimates obtained from an
experiment of this kind. Such expected sampling variances must
obviously be used in assessing the relative efficiencies for the purpose
of planning future experiments. They are general properties of the
type of experiment and therefore applicable to all experiments of the
kind in question, whereas the relative efficiencies actually observed
in any given experiment necessarily reflect its own special circum-
stances and are therefore applicable to it alone.

Applying this method to the four parts of the experiment gives
the percentage efficiencies set out in table io for the components of
variation in the unweighted analysis. For the two genetical para-
meters D and H and for E1, the efficiency is never less than 75 per cent.
and indeed for D the unweighted analysis sacrifices only about one
part in fourteen of the information that the weighted treatment can
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which the various statistics are calculated. It is therefore of interest
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to look at a further experiment of the same general kind as that with
Drosophila but which is smaller and shows a somewhat different balance
of structure. Data are available for flowering time and plant height
in jiicotiana rustica.

The statistics available for both characters in this plant are the
same as with Drosophila. Table i i shows the number of degrees of

TABLE ii
Degrees offreedom for the statistics in the Nicotiana experiment and the

balances of the Nicotiana and Drosophila experiments

Statistic

iVicotiana Drosophila

Degrees of
freedom Balance Balance

V1p8
V1p3
W123
V23
E1
E

8o
24
24

200
200
42

40
12
12

100
100
21

10
II
II

100
i6
2

freedom on which each statistic is based. An attempt has also been
made in this table, to illustrate and compare the relative balances
of' the two experiments by showing the number of degrees of freedom
for each statistic expressed relative to the number for V2 taken as
ioo. Thus in .Nicotiana, Vg is based on 200 degrees of freedom and

TABLE 12

Components of variation and efficiency of unweighted estimates in Nicotiana

Flowering time components
Relative
efficiency

Plant height components
Relative
efficiency

Unweighted WeightedUnweighted Weighted

D
H
E1
E2

651±1263 321±730
3050±3122 4372±1356
491+349 456±045
244±273 152+032

95
79
6o
II

1945±695
1098-4-1718
748+191
548+150

2054±1171
928±1936
726+072
620±126

86
66
71
55

V1 on 8o so that when V takes ioo on the relative scale, V1
takes 40. The chief differences between the experiments lie in the
greater relative weight of V1F2, E1 and E2 in Jiicotiana.

There was no evidence of linkage, exerting an effect in respect of
either character and the estimates given are therefore taken from the
inclusive evaluation. The weighted and unweighted estimates of the
components of variation are shown for both characters of Jiicotiana
in table 12 together with their standard errors and the relative
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efficiencies of the unweighted estimates. As in Drosophila, the Un-
weighted estimates are encouragingly similar to the weighted, the
greatest relative discrepancy being in the D of flowering time. Neither
this difference, nor any other between the weighted and unweighted
estimates, is anywhere near significance. The standard errors of
both sets of estimates are large as would be expected from an experi-
ment much smaller in size than that with Drosophila, but even so the
weighted analysis clearly establishes the presence of dominance in
respect of flowering time which the unweighted analysis fails to do.

The efficiencies of the unweighted estimates relative to the weighted
are very much the same for Jsficotiana as for Drosophila apart from the
case of E2 in flowering time. Evidently the difference in balance of
the two experiments has had little effect on the efficiency of the
unweighted analysis. In an example discussed by Nelder (1960),
however, the efficiency of the unweighted method was distinctly lower.
This case contrasted with the present examples in that the ratio of the
greatest to the smallest weights it involved was ioo : i, whereas in
our experiments this ratio always lay between 15 : x and 30 : i. This
presumably accounts for the difference in efficiency of the unweighted
analyses. It would thus seem that despite its shortcomings, the
simple unweighted treatment may be expected to yield reasonable
estimates of the components of variation, though the values found for
their standard errors cannot be regarded as fully reliable.

6. SUMMARY

Two inbred lines, Oregon (B) and Samarkand (S) of Drosophila
melanogaster were crossed reciprocally. In addition to the F1's and
Fs, biparental progenies of the third generation (BIPS) were raised
from both crosses. The number of sternopleural chaet were counted
in all these generations and the components of variation (D, H, E1
and E2) in respect of this character were estimated using the method
devised by Mather (i4.). Estimates were obtained in quadruplicate
by using data from males and females separately in the two halves
of the experiment stemming from the reciprocal crosses. The results
from the B >< S females proved to be aberrant for reasons which are
not known. The analyses yielded no clear indication of the presence
of linkage on the variation in respect of this character.

This unweighted method of analysis is easy to use but makes no
allowance for the differences in the precision of the statistics for the
various generations or for correlations among these statistics. A
weighted method which accommodates these differences in precision
and correlation has been described by Nelder (1960) and this was
applied to the results, the iterative calculations being carried out on
the Rothamsted electronic computer. Two cycles of iteration would
appear generally to be adequate in using this method.

The simple unweighted analysis yields estimates of the components
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of variation which do not differ significantly from those resulting
from the weighted analysis. The relative efficiency of the unweighted
analysis varies from 6o to over go per cent. for the various components
of variation over the four parts of the experiment.

A further set of data for flowering time and plant height in
Nicotiana rustica were similarly analysed by both methods. Though
the broad structure of the experiment was similar to that of the one
with Drosophila the relative precisions of the statistics it yielded were
somewhat different. The unweighted estimates of the components
stood in very much the same relation to the weighted estimates as in
Drosophila and the efficiency of the weighted method was also much
the same.
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