Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic origin of Behçet’s disease population in Denizli, Turkey; population genetics data analysis; historical demography and geographical perspectives based on β-globin gene cluster haplotype variation

Abstract

In our study, we aimed to investigate the possible genetic drift, relationships, expansion and historical origin based on haplotype frequencies of the β-globin gene cluster of normal and Behçet’s disease (BD) population in Denizli, Turkey. We examined blood DNA samples obtained from our DNA bank. The association of population genetic parameters such as haplotypes, diversity, differentiation, Hardy–Weinberg equilibrium and demographic analysis for two populations was performed by Arlequin ver. 3.5. Our results show that both populations have high similarity in genetic parameters in terms of development and expansion based on haplotype diversity through the history. We found that historical levels of gene flow were significantly higher between the two populations. According to historical population, growth parameter of τ values for normal and BD populations dated approximately 42 000 to 38 000 ybp, respectively. In conclusion, historically, two populations show similar genetic parameters and unimodal growth distribution. Our results are consistent with the view that the BD may have occurred in area, independent from Silk Road.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Poon W, Verity DH, Larkin GL, Graham EM, Stanford MR . Behçet’s disease in patients of west African and Afro-Caribbean origin. Br J Ophthalmol 2003; 87: 876–878.

    Article  CAS  Google Scholar 

  2. Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR . Behçet’s disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens 1999; 54: 213–220.

    Article  CAS  Google Scholar 

  3. Verity DH, Wallace GR, Vaughan RW, Stanford MR . Behçet’s disease: from Hippocrates to the third millennium. Br J Ophthalmol 2003; 87: 1175–1183.

    Article  CAS  Google Scholar 

  4. Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M . Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol 1982; 100: 1455–1458.

    Article  CAS  Google Scholar 

  5. Verity DH, Wallace GR, Vaughan RW, Kondeatis E, Madanat W, Zureikat H et al. HLA and TNF polymorphisms in ocular Behçet’s disease. Tissue Antigens 1999; 54: 264–272.

    Article  CAS  Google Scholar 

  6. Atalay A, Yıldız-Demirtepe S, Tatlıpınar S, Şanlı-Erdoğan B, Çobankara V, Yıldırım C et al. HLA-B51 gene and its expression in association with Behçet’s disease in Denizli Province of Turkey. Mol Biol Rep 2008; 35: 345–349.

    Article  CAS  Google Scholar 

  7. Sakly N, Boumiza R, Zrour-Hassen S, Hamzaoui A, Ben Yahia S, Amara H et al. HLA-B27 and HLA-B51 determination in Tunisian healthy subjects and patients with suspected ankylosing spondylitis and Behçet's disease. Ann NY Acad Sci 2009; 1173: 564–569.

    Article  CAS  Google Scholar 

  8. Callegari-Jacques SM, Crossetti SG, Kohlrausch FB, Salzano FM, Tsuneto LT, Petzl-Erler ML et al. The beta-globin gene cluster distribution revisited-patterns in native American populations. Am J Phys Anthropol 2007; 134: 190–197.

    Article  Google Scholar 

  9. Da Luz J, Kimura EM, Costa FF, Sonati MdF, Sans M . Beta-globin gene cluster haplotypes in Afro-Uruguayans from two geographical regions (South and North). Am J Hum Biol 2010; 22: 124–128.

    Article  Google Scholar 

  10. Fullerton SM, Harding RM, Boyceo AJ, Clegg JB . Molecular and population genetic analysis of allelic sequence diversity at the human β-globin locus. Proc Nati Acad Sci USA 1994; 91: 1805–1809.

    Article  CAS  Google Scholar 

  11. Shimizu K, Hashimoto T, Harihara S, Tajima K, Sonoda S, Zaninovic V . Beta-globin gene haplotype characteristics of Colombian Amerinds in South America. Hum Hered 2001; 51: 54–63.

    Article  CAS  Google Scholar 

  12. Excoffier L, Laval G, Schneider S . An Integrated Software Package for Population Genetics Data Analysis. Arlequin ver 3.5.1.3 user manual 2011, 2006. http://cmpg.unibe.ch/software/arlequin3.

  13. Excoffier L, Smouse P, Quattro J . Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992; 131: 479–491.

    CAS  PubMed Central  Google Scholar 

  14. Loveless MD, Hamrick JL . Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 1984; 15: 65–95.

    Article  Google Scholar 

  15. Li WH . Molecular Evolution. Sinauer Associates: Sunderland, MA, USA, 1997.

    Google Scholar 

  16. Nei M . Molecular Evolutionary Genetics. Columbia University Press: New York, NY, USA, 1987.

    Google Scholar 

  17. Watterson GA . On the number of segregating sites in genetically models without recombination. Theor Popul Biol 1975; 7: 256–276.

    Article  CAS  Google Scholar 

  18. Harpending HC . Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 1994; 66: 591–600.

    CAS  Google Scholar 

  19. Rogers AR, Harpending HC . Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992; 9: 552–569.

    CAS  Google Scholar 

  20. Rogers AR . Genetic evidence for a Pleistocene population explosion. Evolution 1995; 49: 608–615.

    Article  Google Scholar 

  21. Schneider S, Excoffier L . Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 1999; 152: 1079–1108.

    CAS  PubMed Central  Google Scholar 

  22. Slatkin M, Hudson RR . Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991; 129: 555–562.

    CAS  PubMed Central  Google Scholar 

  23. Klein RG . Paleoanthropology. Whither the Neanderthals? Science 2003; 299: 1525–1527.

    Article  CAS  Google Scholar 

  24. Mellars PA . Archaeology and the population-dispersal hypothesis of modern human origins in Europe. Philos Trans R Soc Lond B Biol Sci 1992; 337: 225–234.

    Article  CAS  Google Scholar 

  25. Parker G. Human origins. In: The Times Atlas of World History, 4th edn. Times Books: London, UK, 1993.

  26. Excoffier L, Schneider S . Why hunter-gatherer populations do not show sign of Pleistocene demographic expansions. Proc Natl Acad Sci USA 1999; 96: 10597–10602.

    Article  CAS  Google Scholar 

  27. Oppenheimer S . Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map. Philos Trans R Soc B 2012; 367: 770–784.

    Article  CAS  Google Scholar 

  28. Su B, Xiao J, Underhill P, Deka R, Zhang W, Akey J et al. Y chromosome evidence for a northward migration of modern humans into eastern Asia during the last ice age. Am J Hum Genet 1999; 65: 1718–1724.

    Article  CAS  Google Scholar 

  29. Pineton de Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D . New insights into the pathogenesis of Behçet's disease. Autoimmun Rev 2012; 11: 687–698.

    Article  CAS  Google Scholar 

  30. Yurdakul S, Yazici H . Behçet’s syndrome. Best Pract Res Clin Rheumatol 2008; 22: 793–809.

    Article  Google Scholar 

  31. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M et al. A draft sequence of the Neandertal genome. Science 2010; 328: 710–722.

    Article  CAS  Google Scholar 

  32. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 2010; 468: 1053–1060.

    Article  CAS  Google Scholar 

  33. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, Gragert L et al. The shaping of modern human immune systems by multiregional admixture with Archaic humans. Science 2011; 334: 89–94.

    Article  CAS  Google Scholar 

  34. Piga M, Mathieu A . The origin of Behçet's disease geoepidemiology: possible role of a dual microbial-driven genetic selection. Clin Exp Rheumatol 2014; 32: S123–S129.

    Google Scholar 

  35. Hill AV, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 1991; 352: 595–600.

    Article  CAS  Google Scholar 

  36. Hill AV, Wainscoat JS . The evolution of the alpha- and beta-globin gene clusters in human populations. Hum Genet 1986; 74: 16–23.

    Article  CAS  Google Scholar 

  37. ISG (International Study Group). Criteria for Behçet’s diagnosis of Behçet’s disease. Lancet 1990; 335: 1078–1080.

    Google Scholar 

  38. Ozturk O, Arikan S, Atalay A, Atalay EO . Analysis of the population genetic structure of Hb D-Los Angeles [β121 (GH4) Glu→Gln GAA→CAA] in Denizli, Turkey; genetic diversity, historical demography and estimation of the mutation rates based on haplotype variation. Am J Hum Biol 2015; 28: 476–483.

    Article  Google Scholar 

  39. Falchi A, Giovannoni L, Vacca L, Latini V, Vona G, Varesi L . β-Globin gene cluster haplotypes associated with β-thalassemia on Corsica Island. Am J Hematol 2005; 78: 27–32.

    Article  CAS  Google Scholar 

  40. Atalay EÖ, Atalay A, Üstel E, Yıldız S, Ozturk O, Köseler A et al. Genetic origin of Hb D-Los Angeles according to beta globin gene cluster haplotypes. Hemoglobin 2007; 31: 387–391.

    Article  CAS  Google Scholar 

  41. Ozturk O, Atalay A, Koseler A, Ozkan A, Koyuncu H, Bayram J et al. Beta globin gene cluster haplotypes of abnormal hemoglobins observed in Turkey. Turk J Haematol 2007; 24: 146–154.

    CAS  Google Scholar 

  42. Bahadır A, Koseler A, Atalay A, Koyuncu H, Akar E, Akar N et al. Hb D-Los Angeles [β121(GH4)Glu>Gln] and Hb Beograd [β121(GH4)Glu>Val]: implications for their laboratory diagnosis and genetic origins. Turk J Hematol 2009; 26: 17–20.

    Google Scholar 

  43. Excoffier L, Laval G, Schneider S . Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 2005; 1: 47–50.

    Article  CAS  Google Scholar 

  44. Silva EF, Oliveira CAM, Lins-e-Silva ACB, Rodal MJN . Diversity and genetic structure of natural fragmented population of Tapirira Guianensis Aubl. in northeastern Brazil. Biorem Biodiv Bioavail 2008; 2: 35–40.

    Google Scholar 

  45. Excoffier LG . Arlequin ver. 3.5.1.3 user manual, 2011. http://cmpg.unibe.ch/software/arlequin3 (accessed May 2012).

  46. Wright S . The interpretation of population structure by F-statistic with special regard to system of mating. Evolution 1965; 19: 395–420.

    Article  Google Scholar 

  47. Mantel N . The detection of disease clustering and a generalized regression approach. Cancer Res 1967; 27: 209–220.

    CAS  Google Scholar 

  48. Slatkin M . A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995; 139: 457–462.

    CAS  PubMed Central  Google Scholar 

  49. Schneider S, Roessli D, Excoffier L. Arlequin: a software for population genetics data analysis. User manual version 2.000, 2000..

  50. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed Central  Google Scholar 

  51. Fu Y . Statistical tests of neutrality of mutations against population growth, hitchhiking and backgroud selection. Genetics 1997; 147: 915–925.

    CAS  PubMed Central  Google Scholar 

  52. Ray N, Curratand M, Excoffier L . Intra-deme molecular diveraity in spatially expanding populations. Mol Biol Evol 2003; 20: 76–86.

    Article  CAS  Google Scholar 

  53. Excoffier L . Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 2004; 13: 853–864.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Pamukkale University Research Fund Projects Nos 2005SBE001, 2005SBE002 and 2006SBE004 regarding to consumables used.

Author contributions

SA and AB provided support in the data generation of the laboratory results, sample collection and preparation. SA and AB equally contributed to the study regarding the benchwork. AA and EOA supervised the study, and were involved in the data interpretation and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Ozturk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O., Arikan, S., Bahadir, A. et al. Genetic origin of Behçet’s disease population in Denizli, Turkey; population genetics data analysis; historical demography and geographical perspectives based on β-globin gene cluster haplotype variation. Genes Immun 18, 28–32 (2017). https://doi.org/10.1038/gene.2016.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.46

This article is cited by

Search

Quick links