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Test of rare variant association based on affected
sib-pairs

Qiuying Sha1 and Shuanglin Zhang*,1

With the development of sequencing techniques, there is increasing interest to detect associations between rare variants and

complex traits. Quite a few statistical methods to detect associations between rare variants and complex traits have been

developed for unrelated individuals. Statistical methods for detecting rare variant associations under family-based designs have

not received as much attention as methods for unrelated individuals. Recent studies show that rare disease variants will be

enriched in family data and thus family-based designs may improve power to detect rare variant associations. In this article,

we propose a novel test to test association between the optimally weighted combination of variants and trait of interests for

affected sib-pairs. The optimal weights are analytically derived and can be calculated from sampled genotypes and phenotypes.

Based on the optimal weights, the proposed method is robust to the directions of the effects of causal variants and is less

affected by neutral variants than existing methods are. Our simulation results show that, in all the cases, the proposed method

is substantially more powerful than existing methods based on unrelated individuals and existing methods based on affected

sib-pairs.
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INTRODUCTION

Recent studies show that the large number of disease-associated
variants identified through genome-wide association studies account
for only a small portion of the presumed phenotypic variation.1 One
of the potential sources of missing heritability is the contribution of
rare variants.2–7 The recent advances of sequencing technology have
made directly testing rare variants possible.8,9 Therefore, there is
increasing interest to detect associations between rare variants and
complex traits.
Recently, several statistical methods to detect associations between

rare variants and complex traits have been developed for unrelated
individuals. These methods can be roughly divided into three groups:
burden tests, quadratic tests, and combined tests. Burden tests include
the cohort allelic sums test,10 the combined multivariate and
collapsing method,11 the weighted sum statistic (WSS),12 the
variable minor allele frequency (MAF) threshold method,13 and the
cumulative minor-allele test14 among others. Burden tests implicitly
assume that all the rare variants are causal and the directions of the
effects are all the same. If these assumptions are true, burden tests can
be powerful tests; otherwise, burden tests can perform poorly.15–18

Quadratic tests include C-alpha test,19 sequence kernel association
test,15 and the test for Testing the effects of the Optimally Weighted
combination of variants (TOW).17 Quadratic tests also include
adaptive weighting methods20–24 since, as pointed out by Derkach
et al,18 adaptive weighting methods are operationally similar to
quadratic tests. Quadratic tests are robust to the directions of the
effects of causal variants and are less affected by neutral variants than
burden tests are. If most of the rare variants are causal and the
directions of the effects of causal variants are all the same, then
burden tests can outperform quadratic tests; otherwise, quadratic tests
perform better. To increase the robustness of a test, Derkach et al and
Lee et al proposed combined tests that combine information from

burden and quadratic tests aiming to have advantages of both burden
and quadratic tests.16,18

All of the aforementioned methods are for unrelated individuals.
For any type of study design, the statistical power will be improved if
rare variants can be enriched in the samples. If one parent has a copy
of a rare allele, half of the offspring are expected to carry it, and
hence, variants that are rare in the general population could be very
common in certain families.25 Therefore, family-based designs may
have an important role in rare variant association studies. More
recently, a couple of family-based rare variant association methods for
quantitative traits26,27 and for qualitative traits28,29 have been
developed.
In this article, based on affected sib-pair data, we propose a test for

Testing the effects of the Optimally Weighted combination of variants
(TOW-sib). TOW-sib is based on the score test for testing the
optimally weighted combination of variants derived from the retro-
spective likelihood of affected sib-pairs, unrelated controls, and
possible unrelated cases. The optimal weights are analytically derived
and can be calculated from sampled genotypes and phenotypes. Based
on the optimal weights, TOW-sib is robust to the directions of the
effects of causal variants and is less affected by neutral variants than
existing tests are. We use extensive simulation studies to compare the
performance of the proposed method with that of existing methods
based on unrelated individuals12,17 and existing methods based on
affected sib-pairs.28 Our simulation results show that, in all the cases,
the proposed method is substantially more powerful than existing
methods based on either unrelated individuals or affected sib-pairs.

MATERIALS AND METHODS
Consider a sample of ns affected sib-pairs, na unrelated cases, and nc unrelated

controls. Each individual has been genotyped at M variants in a genomic

region. Denote gji¼ (gji1,...,gjiM)
T, gai¼ (gai1,y,gaiM)

T, and gci¼ (gci1,y,gciM)
T
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as the genotypes of the jth individual in the ith sib-pair, the ith case, and

the ith control, respectively, where gjim, gaim, gcimA{0,1,2} are the number of

minor alleles. Let xji ¼
PM

m¼1 wmgjim j ¼ 1; 2ð Þ, xai¼
PM

m¼1 wmgaim, and

xci¼
PM

m¼1 wmgcim denote the combinations of genotypic scores at the M

variants of the ith sib-pair, the ith case, and the ith control, respectively, where

w¼ (w1,...,wM) are weights and their values will be decided later. Denote the

disease status of an individual by D with D¼ 0 indicating a normal, whereas

D¼ 1 indicating a diseased individual.

The retrospective likelihood is given by

L ¼
Yns
i¼1

Prðg1i; g2i j D¼1;D¼1Þ
Yna
i¼1

Prðgai j D¼ 1Þ
Ync
i¼1

Prðgci j D¼0Þ

¼
Yns
i¼1

PrðD¼1 j g1iÞ PrðD¼1 j g2iÞPrðg1i; g2iÞP
g�1 ;g

�
2

PrðD¼1 j g�1 ÞPrðD¼1 j g�2 Þ Prðg�1 ; g�2 Þ
�
Yna
i¼1

PrðD¼1 j gaiÞ PrðgaiÞP
g?

PrðD¼1 j g?ÞPrðg?Þ

�
Ync
i¼1

ð1� PrðD¼1 j gciÞÞPrðgciÞ
1�

P
g?

PrðD¼1 j g?ÞPrðg?Þ

;

where g
?

1 and g
?

2 represent all possible genotype pair for a sib-pair and g*

represents all possible genotypes for an individual. Choose g0¼ (0,y,0) as a

baseline genotype. Let r(g) be the relative risk of genotype g to the baseline

genotype. Following Schaid,30 we use a log-linear model to model the relative

risk, ie, r(g)¼ exb, with x representing the combination of genotypic scores of

the genotype g. Denote the risk of an individual with the baseline genotype as

Pr(D¼ 1|g0)¼ ea. Then, the retrospective likelihood is given by

L¼
Yns
i¼1

eðx1i þ x2iÞb Prðg1i; g2iÞP
g�1 ;g

�
2

eðx
?
1 þ x?2 Þb Prðg�1 ; g�2 Þ

Yna
i¼1

exaib PrðgaiÞP
g?

ex?b Prðg?Þ
Ync
i¼1

ð1� eaþ xcibÞPrðgciÞ
1�

P
g?

eaþ x?b Prðg?Þ

ð1Þ

where x?1 and x?2 represent the combinations of genotypic scores of the

genotypes g?1 and g?2 , respectively, and x* represents the combination of

genotypic scores of the genotype g*.

In Appendix A, we have shown that, under the assumption that the M

variants are independent (our proposed test is still valid if this assumption is

not true), the score test statistic to test the null hypothesis H0:b¼ 0 is given by

T w1; :::;wMð Þ ¼ U2

V
;

where U¼
Pns

i¼1 ðx1i þ x2i � 4p̂Þþ
Pna

i¼1 ðxai � 2p̂Þ� â
Pnc

i¼1 ðxci � 2p̂Þ, V¼
ð6ns þ 2na þ 2ncâ

2Þ
PM

m¼1 w
2
mp̂mð1� p̂mÞ, p̂m and â are the maximum

likelihood estimates (MLEs) of pm and a ¼ ea

1� ea under the null hypothesis,

pm is the MAF at the mth variant, and p̂¼
PM

m¼1 wmp̂m. Under the null

hypothesis, the likelihood function becomes

L0¼
Yns
i¼1

Prðg1i; g2iÞ
Yna
i¼1

PrðgaiÞ
Ync
i¼1

PrðgciÞ:

Based on L0, p̂m has no explicit expression. Using the joint distribution

of genotypes of a sib-pair given by Table 1, we can construct an

expectation-maximization algorithm to calculate p̂m (see Appendix B). We

cannot estimate a based on L0, because L0 does not contain a. We propose to

estimate a based on the full likelihood function

Lfull ¼
Yns

i¼1
Prðg1i; g2i;D ¼ 1;D ¼ 1Þ

Yna

i¼1
Prðgai;D ¼ 1Þ

Ync

i¼1
Prðgci;D ¼ 0Þ:

Based on Lfull, the MLE of a ¼ ea

1� ea under the null hypothesis is

â ¼ 2ns þ na
nc

. Using this estimate of a, U can be written as

U ¼
Pns

i¼1 ðx1i þ x2iÞþ
Pna

i¼1 xai � â
Pnc

i¼1 xci. Let um ¼
Pns

i¼1 ðg1im þ g2imÞþPna
i¼1 gaim � â

Pnc
i¼1 gcim; u¼ u1; :::; uMð ÞT , N¼ 6nsþ 2naþ 2ncâ

2, v ¼ diag

ðNp̂1ð1� p̂1Þ; . . . ;Np̂Mð1� p̂MÞÞ, and w¼ (w1,y,wM)
T. Then,

Tðw1; . . . ;wMÞ ¼
wTuuTw

wTvw
:

T(w1,y,wM) reaches its maxim when w¼ v�1u. We define the statistic of

the test for Testing the effect of an Optimally Weighted combination of

variants for sib-pair data (TOW-sib) as

TTOW � sib ¼ max
w1; ... ;wM

Tðw1; . . . ;wMÞ ¼ uTv� 1u ¼
XM
m¼1

u2m
Np̂mð1� p̂mÞ

¼
XM
m¼1

Tm:

We use a special permutation test to evaluate P-values of TOW-sib. For each

permutation, we have the following steps: (1) permute the multi-variant

genotypes g11; :::; g1ns ; ga1; :::; gana ; gc1; :::; gcnc and get the permuted genotypes

g?11; . . . ; g
?
1ns
; g?a1; . . . ; g

?
ana

; g?c1; . . . ; g
?
cnc
. (2) In the ith sib-pair, given g?1i, we

generate g?2i variant by variant according to the conditional distribution

Pr(g2|g1) from Table 1. (3) Calculate T?
TOWsib, the value of TTOW�sib based

on the permuted genotypes g?1i; g
?
2iði ¼ 1; . . . ; nsÞ, g?aiði ¼ 1; . . . naÞ, and

g?ciði ¼ 1; . . . ; ncÞ. We generate g?2i under the assumption that the M variants

are independent. When the M variants are in linkage disequilibrium (LD),

TTOW�sib and T?
TOWsib may have different variances, although they have the

same mean. In order to make TTOW�sib and T?
TOWsib have the same mean

and same variance, we standardize TTOW�sib such that TTOW�sib�ST¼
(TTOW�sib�mTOW�sib)/sTOW�sib, where mTOW�sib and s2TOWsib are the esti-

mates of the mean and variance of TTOW�sib (see Appendix C on how to

calculate mTOW�sib and s2TOWsib). Suppose we perform B times of permuta-

tions. Let T
?ðbÞ
TOWsibST denote the value of TTOW�sib�ST based on data of the bth

permutation (b¼ 0 denotes the original data). Then, the P-value of the test is

given by Pvalue ¼ # fb : T?ðbÞ
TOWsibST4T

?ð0Þ
TOWsibST; b ¼ 1; . . . ;Bg=B.

For a simulation study with R replicates, the above procedure

will be rather computationally expensive. In our simulation studies,

we use the pooling permutation method proposed by Guo and Lin to

evaluate P-values.31 In the pooling permutation method, permuted

samples from all the replicates are pooled together to form a joint

sample from the null distribution. Suppose that we have R replicates

and we perform B permutations for each replicate. Let TTOW�sib�ST
(b,r)

denote the value of TTOW�sib�ST based on data of the bth permutation

of the rth replicate (b¼ 0 denotes the original data). Then, the

Table 1 The joint distribution of genotypes of a sib-pair

Pr(g1, g2|IBD¼0) Pr(g1, g2|IBD¼1)

g1/g2 0 1 2 g1/g2 0 1 2

0 q4 2pq3 p2q2 0 q3 pq2 0

1 2pq3 4p2q2 2p3q 1 pq2 pq p2q

2 p2q2 2p3q p4 2 0 p2q p3

Pr(g1, g2|IBD¼2) Pr(g1, g2)

g1/g2 0 1 2 g1/g2 0 1 2

0 q2 0 0 0 q2(1þ q)2/4 pq2(qþ1)/2 p2q2/4

1 0 2pq 0 1 pq2(qþ1)/2 pq(pqþ1) p2q(pþ1)/2

2 0 0 p2 2 p2q2/4 p2q(pþ1)/2 p2(1þp)2/4

Notes: g1 and g2 are the genotypes of a sib-pair at a single variant. IBD means identical by decent. p and q are the allele frequencies of the two alleles.
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P-value of the test in the rth replicate is given by

Pvalue ¼ # b; r0ð Þ : T b;r0ð Þ
TOWsibST4T

0;rð Þ
TOWsibST; b ¼ 1; :::;B; r0 ¼ 1; :::;R

n o
= BRð Þ:

As the permutation samples are pooled across all replicates to form a

sample from the null, B can be set to be much smaller than the situation

when only one sample is analyzed.

We compare the performance of the proposed method with three existing

methods: WSS,12 sibpair-based weighted sum statistic (SPWSS),28 and TOW.17

WSS and TOW are based on unrelated cases and controls, whereas SPWSS is

based on affected sib-pairs, unrelated cases, and unrelated controls.

Simulation
The empirical Mini-Exome genotype data provided by the genetic analysis

workshop 17 are used for simulation studies. This data set contains genotypes

of 697 unrelated individuals on 3205 genes. The genotypes of the genetic

analysis workshop 17 data set are extracted from the sequence alignment files

provided by the 1000 Genomes Project for their pilot3 study (http://

www.1000genomes.org). We choose four genes: ELAVL4 (gene1), MSH4

(gene2), PDE4B (gene3), and ADAMTS4 (gene4) with 10, 20, 30, and 40

variants, respectively. We merge the four genes to form a super gene (Sgene) with

100 variants with 86 rare variants (MAFo0.01) and 14 common variants

(MAFZ0.01). We choose Sgene because the distributions of MAFs in the 100

variants in Sgene and in the 24487 variants in all the 3205 genes are very

similar.17 In our simulation studies, we generate genotypes based on the

genotypes of 697 individuals in Sgene. We use the program fastPHASE to infer

haplotypic phase for the 697 individuals and calculate haplotype frequencies.32 To

generate the genotype of an individual, we generate two haplotypes according to

the haplotype frequencies. To obtain the genotypes of a family, we first generate

genotypes of parents. Then the genotypes of children are generated from parental

haplotypes by random transmission. To generate a qualitative disease affection

status, we use a liability threshold model based on a continuous phenotype

(quantitative trait). An individual is defined to be affected if the individual’s

phenotype is at least one standard deviation larger than the phenotypic mean.

This yields a prevalence of 16% for the simulated disease in the general

population. In the following, we describe how to generate a quantitative trait.

Under the null hypothesis, we generate trait values for unrelated individuals

according to the standard normal distribution. For a family with m children,

let Y1¼ (yF,yM) and Y2¼ (y1,y2,?,ym) denote the trait values of the parents

and the m children in a family, respectively. Assume that (Y1,Y2) follows a

multivariate normal distribution with a mean vector of zero and variance-

covariance matrix ofP
¼

P
11

P
12P

21

P
22

� �
, where

P
11 ¼

1 0
0 1

� �
,
P

12 ¼
PT

21 ¼
r ::: r
r ::: r

� �
,

and
P

22 ¼
1 ::: r

. .
.

r ::: 1

0B@
1CA:

This variance-covariance matrix indicates that the parents in each family

are independent, and the correlation coefficient between a parent and a

child or between two children is constant, r (in this study, r¼ 0.2). To

generate trait values of all members in each family, we first generate the

trait value of a parent by using a standard normal distribution. Then,

trait values of the children are generated by a normal distribution

with a mean vector mc¼
P

21

P� 1
11 Y1 and a variance–covariance matrixP

c ¼
P

22 �
P

21

P� 1
11

P
12.

Under the alternative hypothesis, we choose ncau rare variants (MAFo1%)

as causal variants. The value of ncau is determined by pcau, the percentage of

causal variants in rare variants. Let pp denote the percentage of protective

variants in causal variants, then the number of protective variants and the

number of risk variants are np¼ ncau � pp and nr¼ ncau � (1�pp), respectively.

For the jth member in the ith family, let xijkr and xijkp denote the genotypic

scores of the kthr risk variant and the kthp protective variant, respectively. Assume

that all causal variants have the same heritability. Then the disease model is

given by yij¼
Pnr

kr¼1 bkr xijkr �
Pnp

kp¼1 bkp xijkp þ eij, where bkr and bkp are

coefficients and their values depend on the total heritability, and eij is the

trait value under the null hypothesis.

To generate affected sib-pairs, we generate families with two children. We

keep generating families with two children until we have generated enough

families with two affected children.

RESULTS

In simulation studies, P-values are estimated using a pooling
permutation method in which permuted samples from all the
replicates are pooled together to form a joint sample from the null
distribution.31 In each replicate, we perform 20 permutations. Type I
error rates are evaluated using 10 000 replicated samples, whereas
powers are evaluated using 500 replicated samples.
For type I error evaluation, we consider different haplotype

structures (different genes), different sample sizes, different
designs, and different significance levels. For 10 000 replicated
samples, the 95% confidence intervals for type I error rates of
nominal levels 0.05, 0.01, and 0.001 are (0.046, 0.054), (0.008,
0.012), and (0.0004, 0.0016), respectively. The estimated type I
error rates of the proposed test are summarized in Tables 2 and 3.
As shown by these tables, all the estimated type I error rates are
within the 95% confidence intervals, which indicates that the
proposed test is valid.
For fixed number of total cases and fixed number of total

individuals, power comparisons for power as a function of the
number of affected sib-pairs are given in Figure 1. As shown by
Figure 1, the power of TOW-sib increases with the increase of the
number of affected sib-pairs. With the increase of the number of
affected sib-pairs, the power of SPWSS increases if the number of
affected sib-pairs is less than 20% of total number of cases and the
power of SPWSS decreases otherwise. Therefore, in the following

Table 2 Estimated type I error rates of TOW-sib for the design of affected sib-pairs and unrelated controls based on 10000 replicated

samples

Significance level¼0.05 Significance level¼0.01 Significance level¼0.001

Sample size Sample size Sample size

1000 2000 4000 1000 2000 4000 1000 2000 4000

Gene 1 0.0467 0.0492 0.0472 0.0108 0.0094 0.0098 0.0014 0.0016 0.0012

Gene 2 0.0469 0.0477 0.0524 0.0086 0.0085 0.0119 0.0008 0.0008 0.0014

Gene 3 0.0469 0.0484 0.0468 0.0094 0.0113 0.0083 0.0013 0.0014 0.0007

Gene 4 0.0479 0.0478 0.0491 0.0088 0.0096 0.0092 0.0007 0.0013 0.0010

Sgene 0.0465 0.0467 0.0478 0.0091 0.0086 0.0088 0.0008 0.0008 0.0008

Note: nsample is the sample size, ie, the total number of individuals in the sample. nsib is the number of affected sib-pairs. ncase is the number of unrelated cases. ncontrol is the number of
unrelated controls. nsib ¼ nsample/4, ncase¼0, and ncontrol¼ nsample/2.
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discussion, the number of affected sib-pairs is equal to the half of total
number of cases in the design for TOW-sib and the number of
affected sib-pairs is equal to 20% of total number of cases in the
design for SPWSS. The powers of TOWand WSS do not have relation
with the number of affected sib-pairs. In almost all the cases, TOW-
sib is the most powerful test. When the percentage of causal variants
is small (10%), SPWSS is more powerful than TOW and WSS if the
number of affected sib-pairs is between 10 and 45% of the total
number of cases. When the percentage of causal variants is large
(50%), SPWSS is the least powerful test.
As shown by power comparisons for power as a function of

heritability and for power as a function of the percentage of protective
variants (Figures 2 and 3), TOW-sib is the most powerful test in all
the cases. When the percentage of causal variants is small (10%),
SPWSS is more powerful than TOW and WSS. When the percentage
of causal variants is large (50%), SPWSS and TOW have similar
power and are less powerful than WSS if the percentage of protective
variants is small and are more powerful than WSS if the percentage of
protective variants is large.

Figure 4 shows power comparisons for power as a function of the
percentage of causal variants. This figure shows that TOW-sib is the
most powerful test in all the cases and the power of TOW-sib is not
affected much by the percentage of causal variants. With the increase
of the percentage of causal variants, the powers of WSS and TOW
increase, whereas the power of SPWSS decreases. It is easy to
understand that the power increases with the increase of the
percentage of causal variants because larger percentage of causal
variants or smaller percentage of neutral variants means smaller
noise level. The reason of decrease in power of SPWSS with the
increase of the percentage of causal variants probably is that it is
easier to estimate weights when the percentage of causal variants is
smaller. We also conduct a set of simulations to compare the
powers for different values of r. The results (Supplementary
Figure 1) show that the power comparisons have similar patterns
for different values of r.
In summary, TOW-sib is the most powerful test in all the cases.

Among other three tests: WSS, SPWSS, and TOW, none is consis-
tently more powerful than the other two.

Table 3 Estimated type I error rates of TOW-sib for the design of affected sib-pairs, unrelated cases, and unrelated controls based on 10000

replicated samples

Significance level¼0.05 Significance level¼0.01 Significance level¼0.001

Sample size Sample size Sample size

1000 2000 4000 1000 2000 4000 1000 2000 4000

Gene 1 0.0467 0.0507 0.0512 0.0108 0.0118 0.0091 0.0014 0.0014 0.0011

Gene 2 0.0479 0.0534 0.0529 0.0086 0.0103 0.0112 0.0008 0.0011 0.0015

Gene 3 0.0469 0.0521 0.0537 0.0094 0.0108 0.011 0.0013 0.0015 0.0014

Gene 4 0.0469 0.0539 0.0526 0.0088 0.0104 0.0112 0.0007 0.0014 0.0013

Sgene 0.0465 0.0521 0.0516 0.0091 0.0118 0.0117 0.0008 0.0014 0.0015

Note: nsample is sample size, ie, the total number of individuals in the sample. nsib is the number of affected sib-pairs. ncase is the number of unrelated cases. ncontrol is the number of unrelated
controls. nsib¼ nsample/8, ncase¼ nsample/4, and ncontrol¼ nsample/2.
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Figure 1 Power comparisons of four tests for power as a function of number of affected sib-pairs. TOW and WSS are based on 1000 unrelated cases and

1000 unrelated controls. For TOW-sib and SPWSS, the sample size is 2000, where number of unrelated controls is 1000 and number of unrelated cases

plus twice of the number of affected sib-pairs is 1000. Total heritability is 0.03. pcau denotes the percentage of causal variants in rare variants;

pp denotes the percentage of protective variants in causal variants. The power is evaluated at a significance level of 0.001.
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DISCUSSION

There is increasing interest to detect associations between rare
variants and complex traits. Recently, several statistical methods for
detecting rare variant associations by jointly considering multiple
variants in a genomic region have been developed for unrelated
individuals. However, statistical methods for detecting rare variant

associations under family-based designs have not received as much
attention as methods for unrelated individuals, although family-based
designs have been shown to improve power to detect rare var-
iants.28,29 Motivated by the facts that rare disease variants will be
enriched in family data33 and a large number of affected sib-pairs for
a variety of diseases has been collected by traditional linkage studies,
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Figure 2 Powers as a function of heritability. TOW and WSS are based on 1000 unrelated cases and 1000 unrelated controls. SPWSS is based on 1000
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we develop TOW-sib to detect associations between the optimal
combination of rare variants in a genomic region and complex traits
based on affected sib-pairs and unrelated individuals. TOW-sib is
robust to the directions of the effects of causal variants and is also
relatively robust to the number of neutral variants. The proposed
method does not require a MAF filtering threshold and can be applied
to genomic regions that contain both rare and common variants. Our
simulations demonstrated that TOW-sib using affected sib-pairs can
be dramatically more powerful than the methods based on unrelated
individuals and the existing methods based on affected sib-pairs.
Although TOW-sib is derived under the assumption that variants

are independent, our simulation results show that TOW-sib is still a
valid test when variants are in LD. Our simulations for type I error
evaluation are based on the LD structures of genes 1–4 and, in each
gene, there are variants in strong LD (Supplementary Tables 1–4). The
correct type I error rates of TOW-sib in our simulations (Tables 2 and 3)
indicate that this test is valid even if variants are in LD.
The current version of TOW-sib cannot adjust for covariates. It is

possible to extend TOW-sib to be able to adjust for covariates. Denote
zji, zai, and zci as the covariates of the j

th individual in the ith sib-pair,
the ith cases, and the ith controls, respectively. With covariates, the
retrospective likelihood can be written as

L ¼
Yns
i¼1

Prðg1i; g2i j D ¼ 1;D¼1; z1i; z2iÞ
Yna
i¼1

Prðgai j D ¼ 1; zaiÞ

Ync
i¼1

Prðgci j D ¼ 0; zciÞ

Let Pr D j g; zð Þ ¼ eaþ xbþ zTg, where x represents the combination of
genotypic scores of the genotype g and z denotes covariates. Based on
this likelihood, we can derive a score test statistic. However, the details
of adjusting for covariates in TOW-sib need further investigation.

TOW-sib uses the optimal data-driven weights. TOW-sib belongs
to quadratic tests and thus is robust to the directions of the effects of
causal variants. We can use other weights. For example, in the score
test statistic T(w1,y,wM), we can use the weights suggested by
Madsen and Browning,12 that is, wm ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm 1� pmð Þ

p
, where pm is

the estimated MAF with pseudo-counts at the mth variant. We call the
score test T(w1,y,wM) with wm ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm 1� pmð Þ

p
WSS-sib. WSS-

sib belongs to burden tests. When most of the rare variants are causal
and the directions of the effects of causal variants are all the same,
WSS-sib can outperform TOW-sib; otherwise, TOW-sib should
outperform WSS-sib. To increase the robustness of the tests, we can
also construct combined tests by combining information from TOW-
sib and WSS-sib. One thing we want to make clear is the term
‘optimal weight’. The optimal weight in this paper only means that the
selected weight makes the score test statistic maximum, it does not
mean that the selected weight makes the score test to have the
maximum power.
In this study, we estimate a ¼ ea

1� ea based on the full likelihood.
We can also use other estimates of a. Different estimates do not
affect type I error, but do affect power. Our simulations (results
not shown) show that the MLE of a based on the full likelihood is
a good choice. We compare our proposed method with two
methods based on the case/control design to see if the affected
sib-pair design is more powerful than the case/control design. This
is our main purpose. We also compare our proposed method with
one of the existing methods that are applicable to the affected
sib-pair design. Although several methods28,29 developed recently
are applicable to the affected sib-pair design, we only choose
SPWSS28 to compare with because SPWSS is most relevant to our
proposed method.
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APPENDIX A

Score Test Statistic
Using notations in the Method section, from Equation (1), the log retrospective likelihood is given by

log L ¼
Xns
i¼1

ððx1i þ x2iÞbþ log Prðg1i; g2iÞÞ� ns log
X
g�1 ;g

�
2

eðx
?
1 þ x?2Þb Prðg�1 ; g�2 Þþ

Xna
i¼1

ðxaibþ log PrðgaiÞÞ� na log
X
g?

ex
?b Prðg?Þ

þ
Xnc
i¼1

ðlogð1� eaþ xcibÞþ log PrðgciÞÞ� nc logð1�
X
g?

eaþ x?b Prðg?ÞÞ:
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Then,

@ log L
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mp̂mq̂m, U*¼ (U,0,0)T denote the score vector, and I denote

the information matrix. Then, the score test statistic is given by

T ¼ U?T I � 1U? ¼ U2

V
:
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APPENDIX B

Expectation-maximization Algorithm to Estimate Allele Frequency Based on Sib-pairs and Unrelated Individuals
Consider a variant with two alleles. Let B denote the minor allele and p denote the frequency of allele B. We use the following notations.
N: the number of unrelated individuals
Nf: the number of sib-pairs
n: the number of minor alleles in genotypes of the N unrelated individuals
nij: the number of sib-pairs with genotype pair (i,j) or (j,i)
nkij: the number of sib-pairs with genotype pair (i,j) or (j,i) and the pair of genotypes has k alleles IBD

E-step:

n000 ¼
q2

1þ qð Þ2
n00; n

1
00 ¼

2q

1þ qð Þ2
n00; n

2
00 ¼

1

1þ qð Þ2
n00

n001 ¼
q

1þ q
n01; n

1
01 ¼

1

1þ q
n01; n

2
01 ¼ 0

n002 ¼ n02; n
1
02 ¼ n002 ¼ 0

n011 ¼
pq

1þ pq
n11; n

1
11 ¼

1

2 1þ pqð Þ n11; n
2
11 ¼

1

2 1þ pqð Þ n11

n012 ¼
p

1þ p
n12; n

1
12 ¼

1

1þ p
n12; n

2
12 ¼ 0

n022 ¼
p2

1þ pð Þ2
n22; n

1
22 ¼

2p

1þ pð Þ2
n22; n

2
22 ¼

1

1þ pð Þ2
n22

M-step: p ¼ m2

m1 þm2
;

where

m1 ¼ 2N � nþ 4n000 þ 3n100 þ 2n200 þ 3n001 þ 2n101 þ 2n002 þ 2n011 þ n111 þ n211 þ n012 þ n112 ;

m2 ¼ nþ n001 þ n101 þ 2n002 þ 2n011 þ n111 þ n211 þ 3n012 þ 2n112 þ 4n022 þ 3n122 þ 2n222 :

APPENDIX C

Mean and Variance of TOW-sib
It is easy to know that mTOW�sib ¼ EðTTOW�sibÞ ¼

PM
m¼1 Ifpm40g. In the following, we will calculate the variance of TTOW�sib.

Let g1 and g2 denote genotypes of a sib-pair, x¼ g1þ g2, and p (q¼ 1�p) denote the MAF. Using the distribution given by Table 1, we have

E(g1�2p)4¼ 2pq, var(x)¼ 6 pq, and E(x�4p)4¼ 6pq(pqþ 3).

We know that varðT
TOW�sibÞ¼varð

PM

m¼1
TmÞ¼

PM

m¼1
varðTmÞþ

P
m 6¼ k

covðTm ;TkÞ , varðTmÞ ¼ Eðu4mÞ
v2m

� 1, and covðTm;TkÞ ¼
Eðu2mu2kÞ
vmvk

� 1.

Let n¼ nsþ naþ nc, xi¼ g1imþ g2im�4pm for i¼ 1,y,ns, xiþ ns ¼ gaim � 2pm for i¼ 1,y,na, xiþ ns þ na ¼ � baðgcim � 2pmÞ for i¼ 1,y,nc, and
yi is similarly defined for the kth variant as xi for the mth variant.
We can calculate the variance of TTOW�sib if we note that

Eðu4mÞ ¼ Eðx1 þ x2 þ :::þ xnÞ4 ¼ Eð
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2Þ2 � 36ns � 4na � 4ncâ
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2Þ2 � 34ns � 4na � 4ncâ
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1
na þ nc

Pn
i¼1þ ns

x2i y
2
i , and cov(xn, yn) is estimated with 1

na þ nc

Pn
i¼1þ ns

xiyi.
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