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Finding disease genes: a fast and flexible approach
for analyzing high-throughput data

William CL Stewart*,1, Esther N Drill1 and David A Greenberg1

Linkage disequilibrium (LD) is the non-random distribution of alleles across the genome, and it can create serious problems

for modern linkage studies. In particular, computational feasibility is often obtained at the expense of power, precision, and/or

accuracy. In our new approach, we combine linkage results over multiple marker subsets to provide fast, efficient, and robust

analyses, without compromising power, precision, or accuracy. Allele frequencies and LD in the densely spaced markers are used

to construct subsamples that are highly informative for linkage. We have tested our approach extensively, and implemented it in

the software package EAGLET (Efficient Analysis of Genetic Linkage: Estimation and Testing). Relative to several commonly

used methods we show that EAGLET has increased power to detect disease genes across a range of trait models, LD patterns,

and family structures using both simulated and real data. In particular, when the underlying LD pattern is derived from real

data, we find that EAGLET outperforms several commonly used linkage methods. In-depth analysis of family data, simulated

with linkage and under the real-data derived LD pattern, showed that EAGLET had 78.1% power to detect a dominant disease

with incomplete penetrance, whereas the method that uses one marker per cM had 69.7% power, and the cluster-based

approach implemented in MERLIN had 76.7% power. In this same setting, EAGLET was three times faster than MERLIN, and

it narrowed the MERLIN-based confidence interval for trait location by 29%. Overall, EAGLET gives researchers a fast, accurate,

and powerful new tool for analyzing high-throughput linkage data, and large extended families are easily accommodated.
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INTRODUCTION

Although genome-wide association studies have identified more than
400 genomic regions associated with risk for complex disease; these
associations only account for a small fraction of the overall genetic
component of risk.1,2 In contrast, the successes of linkage analysis3–6

have led to the identification of genetic factors with large effects.
As linkage studies began to genotype individuals at thousands of
common single nucleotide polymorphisms (SNPs), a handful of
genetic mutations with modest effects were also identified.7,8 At
present, most genetic studies are genotyping individuals at millions
of sites, often comprising a mixture of both common and rare
variants, but current multipoint linkage methods cannot analyze
such high-throughput data efficiently. Therefore, the power to detect
pathogenic mutations may be substantially increased by making more
efficient use of this valuable resource.
High-throughput linkage data exhibit linkage disequilibrium (LD),

a phenomenon whereby the alleles at neighboring loci are correlated.
When analyzing such data, multipoint methods usually sacrifice
efficiency and/or accuracy for the sake of computational feasibility.
For example, ignoring LD is perhaps the simplest means of achieving
computational feasibility, but this can inflate type I error rates.9–12

Furthermore, ignoring LD tends to distort estimates of trait locus
position when linkage is present.13 As an alternative to ignoring LD,
most multipoint methods either significantly reduce LD by removing
markers14–16 or model LD directly within the analysis.17–20 For
methods that remove markers, such as single subsample-based
methods, there are two main disadvantages. First, the analysis is

often inefficient because a large number (usually the vast majority)
of the high-throughput genotypes are typically ignored. Second, there
is little assurance that the chosen subsample is optimal. There are also
drawbacks for methods that model LD. Typically, the assumptions that
underlie these methods (such as independently segregating haplo-
type blocks, or a first-order Markov process for allelic states along the
chromosome) are not justified; and, the implicit misfit of the model
often leads to a loss in power. Moreover, some of these methods can be
computationally impractical, even for simple designs such as affected
sibpairs (ASPs).
We present a new test for linkage that uses all of the available

genotype data by combining linkage results over multiple subsamples.
The allele frequencies and LD of the dense genotype data are used to
construct subsamples that are highly informative for linkage. We have
implemented our new approach in the software package: EAGLET
(Efficient Analysis of Genetic Linkage: Estimation and Testing), which is
freely available from the Web (see Web Resources for the URL). Note
that once linkage has been established, EAGLET can construct narrow
and accurate confidence intervals for the location of the unknown
disease gene.13 Moreover, all of EAGLET’s many features (eg, linkage
detection, trait location estimation, pairwise LD estimation, and family-
based meta-analysis) can be applied to large extended families.

MATERIALS AND METHODS
Our method uses information from multiple subsamples of dense SNP linkage

data to detect disease genes in the presence of LD. Each subsample uses a

different set of SNPs, but retains all family members. As the markers within
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each subsample are chosen on the basis of their relative heterozygosity, the

subsamples are highly informative for linkage. Furthermore, to account for LD,

we place an upper bound on the pairwise LD (as measured by r2 or D¢) between
adjacent markers in a subsample. When LD is present in the high-throughput

data, the power to detect linkage depends crucially on the degree to which the

linkage equilibrium (LE) assumption is violated within each subsample. We

define subsample size as the number of markers in a subsample, and show that

power is a function of the expected subsample size divided by the total number

of markers on the chromosome; we denote this quantity by l. To understand

why power depends on l, consider the case when lE1. In this event, the

markers within each subsample tend to be closely spaced and in high LD, which

grossly violates the LE assumption and reduces power. Similarly, when lE0,

the markers tend to be sparsely spaced within each subsample, which can

significantly reduce the evidence for linkage, and hence the power. In general,

power is maximized for lA(0, 1).

Subsampling algorithm
Let the pair (T, G) denote all trait and high-throughput genotype data observed

on some (possibly all) members of one or more families. For a given

chromosome, define G�(G1,y, GN) as the collection of single-locus genotypes,

where Gi denotes all genotypes observed at the ith marker for i¼1, 2, y, N.

Furthermore, let G denote a subsample of the high-throughput genotype data

G. We use the following algorithm (described below) to generate a random

subsample. For any chosen value of l, the goal of the algorithm is to select a

subsample that is highly informative for linkage.

Step 1: Choose a random marker from the N available markers. Make this

marker the most recently included marker, and add it to the subsample.

Step 2: Find the first available marker downstream of the most recently

included marker such that the LD between the pair is less than the

marker-specific threshold, k. Make this marker the proposed marker. Note

that the marker-specific threshold k, which bounds the degree to which the LE

assumption is violated, is determined implicitly by l. A more precise definition

of k is given below.

Step 3: Incorporate the proposed marker into the subsample with prob-

ability m, where m depends on k, the heterozygosity of the proposed marker, and

the LD between the proposed marker and the most recently included marker.

For a detailed discussion of how EAGLET computes m see Appendix A.

Step 4: If the proposed marker is incorporated, it becomes the most recently

included marker. Otherwise, it becomes unavailable.

Step 5: Return to Step 2 until every marker downstream of the most recently

included marker is either unavailable or has LD with the most recently included

marker that is greater than or equal to k.
An analogous procedure starting at Step 2 is used to select markers upstream

of the very first marker chosen in Step 1. This completes construction of a

random subsample.

In our implementation, the marker-specific value k¼ko when the marker in

question has heterozygosity equal to the mean heterozygosity of the sample.

Note that the user-defined constant ko is intended to represent an upper bound

on the average pairwise LD, where the average is taken across adjacent intervals

of a subsample. In contrast, the marker-specific value k varies as the hetero-

zygosity of the marker differs from the mean heterozygosity of the sample. In

particular, more informative markers are proposed more often than less

informative markers. For a detailed discussion of the computation of k, see
Appendix A. Furthermore, since the acceptance probability m decreases as the

number of markers with similar heterozygosity increases, proposed markers

that are common are less likely to be incorporated than proposed markers that

are rare. By varying the acceptance probabilities in this way, the resultant

subsample retains most of the information about linkage while maintaining a

relatively small amount of LD. For a detailed discussion of the computation of

acceptance probabilities, see Appendix A.

Test statistic and power
In addition to the use of multiple subsamples, EAGLET also relies on the fast

and efficient computation of the Kong and Cox LOD21 Zlr
2(x), a so-called

‘model free’ LOD score22 evaluated at location x along the chromosome. Our

test statistic is the average, over subsamples, of the max Zlr
2 statistic. In what

follows, we suppress the symbolic representation of trait data T, as all

distributions P (�) and likelihoods L(�) are conditional on T.

As the biological relationship between a pair of individuals determines the

expected number of alleles that they share identical by descent for any location

x in the genome, sharing among a set of affected relatives in excess of this

expectation is usually interpreted as evidence for linkage. A commonly used test

statistic that quantifies the amount of excess sharing is max Zlr
2, defined as

max Z2
lr � sup

x
2 ln

Lðd̂; G; x; rÞ
Lð0; G; x; rÞ

" #
; ð1Þ

where d̂(x) measures the departure from expected sharing at location x, and r is

a known vector of nuisance parameters containing recombination rates and

allele frequencies specific to G. To make use of all of the high-throughput

genotype data, our test statistic

E max Z2
lr

� �
� 1

K

X
j

max Z2
lrðGjÞ; for j ¼ 1; . . . ;K

is approximated by the average of max Zlr
2 over K random subsamples.

Recall that for computational reasons, LD is almost always ignored when

computing max Zlr
2. This means that in unlinked regions of strong LD, the

apparent sharing among relatives is inflated, especially if the genotypes of

founders are missing. If, in addition to missing data on founders, the study is

also enriched for affected members (eg, ASPs), then the increase in apparent

sharing will be misinterpreted as evidence for linkage. However, by retaining

small amounts of LD, it is possible to increase power without increasing the

type I error. For example, when there is linkage, the power to detect a disease

gene from a subsample in LE is generally increased by adding markers, even

though this introduces LD that is subsequently ignored in the analysis. This

happens because the negative effect of model misspecification (ie, assuming an

LE model when LD is present) is often outweighed by the additional informa-

tion obtained for linkage. Of course, if the subsample retains every marker of

the dense genotype data G, then the LD is high, the model misspecification is

severe, and power is typically low. Consequently, the power of a subsample is

generally maximized for more than two but less than Nmarkers. Moreover, for

the methods and simulations considered in this paper, power is always

maximized for lA[2/N, 1], where l is the expected proportion of markers

along the chromosome per subsample.

DATA DESCRIPTION

To assess the power of our proposed method, and to clarify the relative
importance of several factors that influence the analysis of high-
throughput linkage studies, we estimated the power of five different
methods across nine different scenarios. The five methods, which we
describe below, are implemented in the programs: EAGLET, MLOD,
SLOD, EDIST, and MERLIN. The method used in MLOD is similar to
EAGLET in that it also combines information across multiple sub-
samples, but with MLOD, the markers within each subsample are
chosen on the basis of distance (genetic or physical). SLOD is also
similar to EAGLET as it uses LD to choose markers, but SLOD only
uses a single subsample. EDIST (which is a special case of MLOD) uses
a single subsample, but markers are chosen to be equidistant (� one
marker per cM). Finally, MERLIN assumes that SNPs in high LD form
independent blocks, and that the alleles of each block are non-
recombining haplotypes. The nine different simulation scenarios
(which we describe below) encompass different patterns of LD,
modes of inheritance, genetic effects, and family structures. The
dense SNP linkage data were simulated with LD using the program
CALEB (see Web References for the URL), and power (as a function
of l) was estimated from 600 replicates for the first eight scenarios and
1200 replicates for the ninth scenario. To ensure that all methods have
approximately 5% type I error, we used 3000 realizations under the
null hypothesis of no linkage to estimate the correct critical value for
each combination of LD pattern and sample size.
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We generated dense SNP linkage data for the nine different scenarios
by changing the following factors: LD pattern, genetic effect, mode of
inheritance (MOI), and family structure. We considered an LD pattern
that consisted of three equi-length blocks containing � 66 SNPs per
block with alternating LD across blocks (as measured through D¢).
Within each block the pairwise D¢ was 0.9, 0.1, and 0.9, respectively.
This constitutes an extreme pattern of strong-weak-strong LD. We also
considered an empirical LD pattern that was estimated from the dense
SNP data of a real, genome-wide linkage scan.23 We used two levels of
genetic effect with sibling relative risks of 1.5 and 2.0, and two modes of
inheritance: dominant (DOM) and recessive (REC). For each combi-
nation, the family structures were ASPs with missing data on the
parents, and a trait locus was positioned in the middle of 198 SNPs
spread evenly along a 99-cM map. For the last scenario, we simulated
the strong, dominant trait model using the empirical LD pattern on
affected sibling trios (ASTs) to examine the effect of adding an affected
sibling. In every scenario, the trait locus was positioned in between two
regions of relatively high LD.

RESULTS

We used 4800 replicates of dense SNP ASP data to estimate power for
five different multipoint linkage methods across eight different sce-
narios. In Tables 1 and 2, we report the maximum power, which was
maximized over l, for each of the eight scenarios. For the AST (trio)
data, we simulated 500 replicates and estimated the power of all five
methods for a single scenario (Table 3). For completeness, we also
computed the 95% confidence intervals for trait location for EAGLET,
MERLIN, and EDIST.
Table 1 shows that when data are simulated with the empirical LD

pattern (which was estimated from an actual genome scan), EAGLET

slightly outperforms the other methods, and does so irrespective of the
MOI, or the strength of the genetic effect. Similarly, EAGLET
continues to maintain a slight advantage over the other methods,
irrespective of whether data are simulated on ASPs or ASTs (Table 3).
From Table 2, we see that when the trait locus is positioned between
long stretches of LD (D¢¼0.9), as in the extreme LD pattern with
alternating blocks of LD: 0.9–0.1–0.9, EAGLET is comparable to
MERLIN, but that the two distance-based methods MLOD and
EDIST have noticeably less power. For example, when the sibling
relative risk is 2.0, and the MOI is DOM, the power of EDIST and
MLOD is only 13.8% and 19.7%, respectively; whereas, the power of
EAGLET and MERLIN is 27.7% and 28.5%, respectively. Collectively,
these results show that EAGLET has high power and is robust over the
range of scenarios explored. In addition, EAGLETwas generally faster
than MERLIN, and for small values of l, analyses with MERLIN were
often computationally infeasible.
In Figure 1b, data from 1200 replicates with 200 ASTs per replicate

were used to estimate the power functions of EAGLET, MERLIN,
MLOD, and SLOD. Recall that power depends on l the expected
proportion of SNPs per subsample. Figure 1b shows that power is
maximized in the interior for all methods. In addition, EAGLET’s 95%
confidence interval for trait location: (10.37, 55.96) is much tighter
than the 95% confidence interval based on MERLIN: (11.06, 75.63),
resulting in a 29% reduction in length (P¼0.02). EAGLET also
computes the average LOD score curve (ALOD), which is shown
alongside the LOD score curves of MERLIN and SLOD in Figure 1a.
The maximum ALOD has nearly identical power to EAGLET (data
not shown), and it can be used to summarize the evidence for linkage
along the chromosome.

DISCUSSION

EAGLET provides fast, efficient, and accurate analyses of dense SNP
linkage data. What is equally important is that once linkage is
established, EAGLET also yields tight confidence intervals of trait
location with asymptotically valid coverage, thereby reducing the
length of the segment that must be explored to identify the gene.
EAGLET computes the ALOD, which provides a valuable summary of
the evidence for linkage at position x that accounts for the variation
across subsamples, and protects against the negative influence of data
artifacts (eg, undetected map and genotype errors). Furthermore, as
EAGLET does not make any assumptions about the underlying
correlation structure, it is robust to the different patterns of LD in
the genome.
In addition to the methods and LD patterns addressed here, we also

compared the power of EAGLET with six other subsample-based
methods (including some that used a weighted average of the
information in each subsample) under three alternative LD patterns.
EAGLET yielded robust performance across all scenarios, achieving
power as high as, or better than, any of the alternative methods (data
not shown). Note that of the methods discussed in this paper, MLOD

Table 1 Power using the empirical pattern of LD

EAGLET MERLIN MLOD SLOD EDIST

SRR¼1.5

DOM 17.5 16.5 16.0 16.3 12.0

REC 43.7 43.0 42.3 43.3 36.0

SRR¼2.0

DOM 34.5 32.7 33.5 34.2 30.0

REC 54.3 54.2 52.0 53.3 49.7

For EAGLET, MERLIN, MLOD, and SLOD, the maximum power is reported. For comparison, the
power of EDIST is also reported. Dense SNP linkage data were simulated with LD on 600
replicates with 100 and 200 ASPs for the strong and weak genetic models, respectively, and for
different values of sibling relative risk (SRR). The LD pattern was estimated from a real dense
SNP linkage scan.
For each scenario, bolded values indicate the method with the highest estimated power.

Table 2 Power using the extreme pattern of LD

EAGLET MERLIN MLOD SLOD EDIST

SRR¼1.5

DOM 14.8 16.0 11.5 13.0 9.2

REC 44.0 46.5 33.8 42.3 23.2

SRR¼2.0

DOM 27.7 28.5 19.7 24.3 13.8

REC 58.3 58.5 47.0 56.5 41.8

For EAGLET, MERLIN, MLOD, and SLOD, the maximum power is reported. For comparison, the
power of EDIST is also reported. Dense SNP linkage data were simulated with LD on 600
replicates with 100 and 200 ASPs for the strong and weak genetic models, respectively, and for
different values of sibling relative risk (SRR).
For each scenario, bolded values indicate the method with the highest estimated power.

Table 3 Power using the empirical pattern of LD with ASTs and ASPs

EAGLET MERLIN MLOD SLOD EDIST

ASTs 78.1 76.8 72.7 76.8 69.5

ASPs 34.5 32.7 33.5 34.2 30.0

For EAGLET, MERLIN, MLOD, and SLOD, the maximum power is reported. For comparison, the
power of EDIST is also reported. Attention is restricted to the dominant setting with a sibling
relative risk of 2.0, and the empirical LD pattern estimated from a real dense SNP linkage scan.
For each scenario, bolded values indicate the method with the highest estimated power.
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is almost identical to the method proposed by Bacanu,14 and that
SLOD is very similar to the method proposed by Bellenguez.16

Moreover, although all of these methods were designed for high-
throughput SNP data, they are in principle, applicable to data sets
containing single nucleotide variants as well.
For large samples, it is clear that accounting for variation across

subsamples, and choosing subsamples on the basis of LD, yields
tighter confidence intervals for trait locus position when compared
with existing methods.13 However, it is only here (within the context
of linkage detection) that we have explored the relative contribution of
each factor separately. For example, it is usually better to choose a
subsample on the basis of LD (eg, SLOD), than it is to combine
information across subsamples chosen on the basis of distance
(eg, MLOD). As EAGLET does both (ie, it uses LD to choose its
subsample and it combines information across subsamples), it
outperforms both SLOD and MLOD.
With the emerging promise of affordable whole-exome and/or

whole-genome sequencing, many researchers hope to identify
pathogenic mutations by examining the co-inheritance of rare variants
with disease.24 However, the vast majority of rare variants (499%) do
not occur in exons, and the typical number of rare variants per
genome (� 3.5 million) is staggering in comparison with the number
of samples that project budgets can afford to resequence.25 Therefore,
any practical implementation of a whole-genome sequencing
approach (now and in the foreseeable future) will benefit substantially
from complementary methods that allow researchers to prioritize rare
variants (eg, candidate genes and predicted gene pathways). To the
extent that multipoint linkage analysis identifies linked and unlinked
regions of the genome, it provides an objective means of prioritizing
rare variants and is potentially an extremely useful complement to
whole-genome sequencing.
Until now, most multipoint linkage methods that account for LD

have focused on minimizing LD. However, we have demonstrated
empirically that power is maximized when the expected proportion
of markers per subsample (denoted l) is between zero and one.

Therefore, when analyzing dense high-throughput linkage data, LD
should not be completely removed nor should every marker be
retained. This is why we maximized power over l for each of the
methods considered. However, when analyzing real data, this max-
imization may be computationally demanding or altogether infeasible
for certain study designs. This means that for many researchers, the
power of MERLIN, SLOD, and MLOD, is likely to be lower than what
we report here, because many researchers will not know the optimal
value of l a priori. Currently, we are in the process of extending
EAGLET to estimate the optimal value of l and to incorporate
parametric linkage statistics, so that researchers can begin to realize
the full potential of high-throughput linkage data.
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APPENDIX A

The computation of marker-specific thresholds and acceptance
probabilities
To facilitate the exposition of marker-specific thresholds and
acceptance probabilities, we encourage readers to consider the
following shopping problem. Imagine that you have a fixed amount
of money and that you are to purchase an unspecified number of
items from a collection of items arranged in a line. Upon inspecting
each item, you must decide to purchase or not to purchase. Ulti-
mately, your goal is to end up with the best subcollection of items.
Now, this simple shopping problem is extremely similar to the
problem of constructing a highly informative subsample from a
modern linkage data set. In particular, the items that are arranged
in a line can be viewed as the dense SNPs, and the items that are
eventually purchased are analogous to a highly informative subsample.
However, instead of spending money to obtain items, SNPs are
purchased (ie, incorporated into the subsample) by admitting differ-
ent amounts of LD. Similarly, just as each item has a value, each SNP
has a value. Moreover, the entire subcollection of items has a value, as
does the subsample. In particular, each subsample provides power to
detect linkage, and this is what we want to maximize. Finally, as is
generally the case with shopping, a deal (ie, purchasing an item for less
than it is actually worth) is usually advantageous. Let hi be the
heterozygosity of SNPi for i¼1,y, N, where N is the number of
SNPs in the original high-throughput genotype data. Let h̄ be the

average heterozygosity across all SNPs, and let ko denote the average
pairwise LD across adjacent intervals of a subsample for a typical
modern linkage study (eg, r2¼0.01). Now, on the basis of hi, assign
each SNP to one of 10 mutually exclusive categories: (0, 0.05), (0.05,
0.1), y, (0.40, 0.45), (0.45, 0.5). Further, let pi be the proportion of
SNPs belonging to the ith category. To decide how much LD we are
willing to admit, we compute a marker-specific threshold ki that is less
than ko if hioh̄ and greater than ko if hi4h̄. Basically, we are willing
to pay more for SNPs that are, on average, more informative. There-
fore, given a symmetric window (a, b) centered around ko with 0oa,
bo1, ki is interpolated from the ratio of (hi�h̄) to (0.5�h̄). This
completes the computation of marker-specific thresholds. Now, let D
denote the LD between the most recently included SNP and the
proposed SNP (see Subsampling Algorithm 2.1). Let jA{1,y, 10}
denote the category in which the proposed SNP falls. If pj40.1 then
the proposed SNP is accepted with probability

0:4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki � DÞ=ki

p
+0:5:

If pjr0.1 then the proposed SNP is accepted with probability

0:1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðki � DÞ=ki

p
+0:9:

Note that, (ki�D)/ki measures the strength of the deal, and given that
a SNP has been proposed, common SNPs (ie, SNPs with pj40.1) are
accepted less often than rare SNPs. This completes the computation of
acceptance probabilities.
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