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Model-Based Multifactor Dimensionality Reduction to
detect epistasis for quantitative traits in the presence
of error-free and noisy data

Jestinah M Mahachie John1,2, François Van Lishout1,2 and Kristel Van Steen*,1,2

Detecting gene–gene interactions or epistasis in studies of human complex diseases is a big challenge in the area of

epidemiology. To address this problem, several methods have been developed, mainly in the context of data dimensionality

reduction. One of these methods, Model-Based Multifactor Dimensionality Reduction, has so far mainly been applied to

case–control studies. In this study, we evaluate the power of Model-Based Multifactor Dimensionality Reduction for quantitative

traits to detect gene–gene interactions (epistasis) in the presence of error-free and noisy data. Considered sources of error are

genotyping errors, missing genotypes, phenotypic mixtures and genetic heterogeneity. Our simulation study encompasses a

variety of settings with varying minor allele frequencies and genetic variance for different epistasis models. On each simulated

data, we have performed Model-Based Multifactor Dimensionality Reduction in two ways: with and without adjustment for main

effects of (known) functional SNPs. In line with binary trait counterparts, our simulations show that the power is lowest in the

presence of phenotypic mixtures or genetic heterogeneity compared to scenarios with missing genotypes or genotyping errors.

In addition, empirical power estimates reduce even further with main effects corrections, but at the same time, false-positive

percentages are reduced as well. In conclusion, phenotypic mixtures and genetic heterogeneity remain challenging for epistasis

detection, and careful thought must be given to the way important lower-order effects are accounted for in the analysis.
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INTRODUCTION

Understanding the effects of genes on the development of complex
diseases and traits in human is a major aim of genetic epidemiology.
These kinds of diseases are controlled by complex molecular mechan-
isms characterized by the joint action of several genes that could have
different effect sizes. In this context, traditional methods within a
regression paradigm involving single markers have limited use and
more advanced and efficient methods are needed to identify gene–
gene interactions and epistatic patterns of susceptibility. One of these
methods is the Multifactor Dimensionality Reduction (MDR)
method,1 which nicely tackles the dimensionality problem involved
in interaction detection by pooling multi-locus genotypes into two
groups of risk based on some threshold value. Those cells with a case/
control ratio equal to or above the threshold are labeled as High risk
and the remaining cells as Low risk. Although MDR has been widely
and successfully used for interaction detection (eg, URL: http://
compgen.blogspot.com/2006/05/mdr-applications.html), it suffers
from ;some major drawbacks, including that important interactions
could be missed owing to pooling too many cells together or that
proposed MDR analyses will only reveal at most one significant
epistasis model, selection being based on computationally demanding
cross-validation and permutation strategies. To overcome the
aforementioned hurdles, Calle et al2,3 developed Model-Based MDR

(MB-MDR) for dichotomous traits and unrelated individuals, hereby
providing the basis for a flexible framework to detect gene–gene
interactions. The method has been made available via an R package
mbmdr. The principal difference between MDR and MB-MDR is that
MB-MDR merges multi-locus genotypes exhibiting some significant
evidence of High or Low risk, based on association testing or
modeling, rather than on comparison with a threshold value. In
addition, those multi-locus genotypes that either show no evidence
of association or have no sufficient sample size contribute to an
additional MB-MDR category, that of ‘No Evidence for risk’. Note that
despite the fact that Lou et al4 recognized in part the necessity to
adjust for covariates and to extend MDR to quantitative traits, issues
related to significance assessment remain, as explained in detail by
Cattaert et al.5

Although a b-version of MB-MDR for quantitative traits has
already been applied by Mahachie John et al,6 its power under several
conditions, including the presence of error sources or noise (eg, geno-
typing errors, missing genotypes, phenotypic mixtures and genetic
heterogeneity (GH)), has never been investigated. The aim of this study
is to evaluate the power of MB-MDR for quantitative traits to detect
gene–gene interactions, for a variety of simulated scenarios. We will
restrict attention to two-order interactions, although MB-MDR can
be used to highlight gene–gene interactions of any order.
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METHODS

MB-MDR
The three steps of the MB-MDR strategy used for this simulation study are

summarized below and visualized in Figure 1. For more general details, we refer

to Cattaert et al.5

MB-MDR step 1: multi-locus cell prioritization. For every pair of markers,

data are organized in a two-way table, with nine genotype cells. Each two-locus

genotype cell, cj , in such a table, is assigned to one of three risk categories, High

risk (H), Low risk (L) or No Evidence for risk (O), as a result of association

tests on each of the individual two-locus genotype cells with the response

variable Y. Cell-dependent testing for H, L and O labeling is carried out with a

Student’s t-test, at the liberal significance level of 0.10, as the power to detect

association using individual cells is likely to be limited. If for a two-locus cell,

the Student’s t-test, comparing the cell’s mean with the mean of the remaining

eight cells, is not significant at 0.10, the cell is labeled as O. The sign of the

STEP 1

STEP 2

STEP 3

Assessing significance of the k-factor models, here by correcting for multiple testing.

The possible multifactor classes of k (e.g., 2) factors are represented in a k- dimensional space. Each cell
(e.g., the cell with 0 copies at locus 1 and 2 copies at locus 2) is tested against the (8)others for association

with the trait Y, leading to 9 test statistics, Wj and associated p-values, pj. 

Another set of k factors is chosen and steps 1-2  are repeated until no more factors
need to be investigated.

High ( ), Low ( ) and No Evidence (blank) labeling is determined by inspecting the direction of the
cell’s test statistic for association and its significance, using a liberal threshold (e.g., 0.1). High risk cells,

low risk cells, and no evidence cells are pooled and tested for association with
Y, resulting in a single test statistic, W for the k-selected factors.

Figure 1 Graphical presentation of the key steps involved in MB-MDR analysis.
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Student’s t-test statistic is used to distinguish between H and L: a positive

(negative) sign refers to risk H (L).

MB-MDR step 2: association test on lower-dimensional construct. The

result of the first step is thus a new categorical variable X with values H, L

andO, which captures information about the importance of the pair of markers

with respect to the trait. A new association test is subsequently performed now

for the new construct X on Y. In particular, we consider the maximum of

WH and WL, which are Student’s t-tests for comparing H versus {L, O} means

and L versus {H, O} means, respectively.

MB-MDR step 3: significance assessment. Once the dimensionality reduc-

tion procedure has been implemented and tests for association have been

performed, for every pair of markers in the data, a single test result {WH, WL}

per marker pair is obtained. Because the test statistics are obtained after

combining cells according to X, using information about the trait Y, WH and

WL will no longer be t-distributed. In fact, these tests are expected to generate

inflated type I errors. We therefore assess the significance of max {WH, WL} per

marker pair, by adopting a permutation-based strategy (999 replicates) that

corrects for multiple testing (over all marker pairs) and adequately controls

family-wise error rate at a¼5%. In particular, we implement the step-down

maxT-adjusted P-values approach, as outlined by Westfall and Young.7

Adjustment for main effects
Some interactions can be identified simply because of highly significant

lower-order effects, and are therefore not genuine. That is why we also consider

MB-MDR adjusted analyses in the following way: with and without adjustment

for main effects of functional SNPs. Main effects are adjusted for in MB-MDR

by first regressing them out in a data preparation step and then considering the

residuals from the regression model as new traits. Two extreme ways of

correcting are considered: the additive model and the co-dominant model.

When adjusting for main effects in the presence of GH, we take into account

that different functional pairs are relevant for heterogeneous subpopulations.

Data simulation
Each of 500 data sets in a simulation setting consists of 1500 unrelated

individuals with 10 SNPs (in linkage equilibrium), two of which are functional.

The minor allele frequencies of a non-functional marker SNPj are fixed at

pj¼0.1+(j�3)�0.05, j¼3,y,10, whereas the minor allele frequencies of the

functional SNPs (SNP1, SNP2) are taken to be equal, and varying as (p1, p2)¼
(p, p), pA{0.1, 0.25, 0.5}. All SNPs are assumed to be in Hardy–Weinberg

Equilibrium.

Two epistasis models that incorporate varying degrees of epistasis are

considered: Model 27 and Model 170 of Evans et al,8 hereafter referred to as

M27 and M170, respectively. To increase the phenotypic mean, M27 requires an

individual to have at least one copy of the increaser allele at both loci, whereas

M170 requires an individual to be heterozygous at one locus and homozygous

at the other. As p increases, the contribution to the total genetic variance of

epistasis variance relative to main effects variances increases for M170 (decreases

for M27) (Table 1).5 The phenotypic means for these epistasis models only take

two values, mL (Low phenotypic mean) and mH (High phenotypic mean). The

total phenotypic variance stot2, that is, the sum of genetic variance at both loci

2s12¼smain
2 (the minor allele frequencies for the functional SNPs are taken to

be the same), epistasis variance sepi2 and environmental variance senv2, is fixed
at 1. As a consequence, the total genetic variance, defined as 2s12+sepi2, has an
interpretation of a broad heritability measure. Throughout this document it

will further be referred to as g2, to clearly indicate that the interpretation as a

heritability is due to the imposed normalization constraints. The parameter g2 is

varied as g2A{0.01, 0.02, 0.03, 0.05, 0.1}. Explicit formulae for these variance

components can be obtained from Evans et al.8

In addition, 1000 null data sets are generated under the most general null

hypothesis of no association between any of the 10 SNPs and the trait (ie, g2¼0,

no main effects and no epistasis).

Introducing noise
Apart from simulating error-free data, we also simulate different error sources

to investigate their impact on the performance of MB-MDR. These involve

introducing 5 and 10% missing genotypes (MG5 and MG10), 5 and 10%

genotyping error (GE5 and GE10), 25 and 50% phenotypic mixtures (PM25

and PM50) and 50% GH. It is important to realize that the foregoing

derivations of variance decomposition relate to a population as whole. When

generating sources of error, estimates of variability will no longer tend to the

estimates at the population level. In other words, the actual genotypic variance

will no longer equal g2. Missing genotypes (MG5 and MG10) and genotyping

errors (GE5 and GE10) are also introduced in the null data, leading to a total

of 255 simulation settings, so as to be able to assess the impact of these on

MB-MDR’s type I error control in the presence of noise.

In particular, scenarios MG5 and MG10 are generated by selecting genotypes

completely at random from the original data and by setting them to missing.

This introduces different per-individual and per-SNP percentages of missing-

ness, reducing the effective sample size, yet maintaining the validity of the

variance component estimates.

As in Ritchie et al,9 genotyping error is simulated using a directed-

error model.10 This model postulates that there is a larger probability for the

minor allele to be consistently mis-genotyped (over-represented). In this

study, either 5% (GE5) or 10% (GE10) of the available genotypes in

the original data set are sampled. From these, homozygous genotypes for the

common allele become heterozygous and heterozygous genotypes for the

rare allele become homozygous. The effect of adding genotyping errors to

the original data is that the actual genetic contribution, sgen2, to the trait

variance is reduced compared to the assumed genetic variance, g2, of the

simulation setting due to the additional variability (noise) introduced into the

system (Table 1).

GH is simulated such that there are actually two different two-locus

combinations increasing/decreasing the phenotypic mean. Half of the indivi-

duals have one pair of functional SNPs (SNP1 and SNP2), and the other half

have the other pair of functional SNPs (SNP3 and SNP4). Introducing the

notations GL (GH) as the multi-locus genotypes leading to a Low (High)

phenotypic mean, traits are simulated according to the distributions specified

below:

Y jg2GL ; g 02GL
� N mL; s

2
env

� �
; Y jg2GL ; g 02GH

� 0:5N mL; s
2
env

� �
+0:5N mH; s

2
env

� �

Y jg2GH ; g 02GH
� N mH; s

2
env

� �
; Y jg2GH ; g02GL

� 0:5N mH; s
2
env

� �
+0:5N mL; s

2
env

� �

Minor allele frequencies of all four functional SNPs are taken to be equal, that

is, pA{0.1, 0.25, 0.5}.

Phenotypic mixing in genetics may occur when a percentage of individuals

with high phenotypic mean have genotype combinations that are consistent

with low phenotypic mean.

In particular, a mixing proportion of wA[0,1] of phenotypic mixture, trait

values are simulated according to

Y jg2GL
� ð1� wpÞN mL; s

2
env

� �
+wpN mH; s

2
env

� �
;

Y jg2GH
� wð1� pÞN mL; s

2
env

� �
+½1� wð1� pÞ�N mH; s

2
env

� �

with mixing proportion either 25% (PM25) or 50% (PM50), and p, the
probability of a multi-locus genotype giving rise to a high phenotypic mean mH.

Table 1 Proportion r2gen/g
2 of the total genetic variance in error-free

data that is due to genetics in the error-prone data, exhibiting either

5% (GE5) or 10% (GE10) genotyping errors, or 25% (PM25) or 50%

(PM50) phenotypic mixture

GE PM

Model p 5% 10% 25% 50%

M27 0.1 0.673 0.494 0.563 0.250

0.25 0.857 0.742 0.563 0.250

0.5 0.926 0.858 0.563 0.250

M170 0.1 0.667 0.489 0.563 0.250

0.25 0.701 0.507 0.563 0.250

0.5 0.740 0.546 0.563 0.250
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RESULTS

The impact of not correcting for lower-order effects
Table 2 gives an overview of MB-MDR empirical type I error rates
in the absence and presence of noise (MG and GE). We observe that

MB-MDR empirical type I error percentages are close to the nominal
type I error percentage of 5%, when no correction for main effects is
performed. When we adjust for main effects, type I error percentages
are further reduced and seem to drop below the theoretical value.
Similar trends are observed when genotyping errors and missing
genotypes are introduced in the data.
Power estimates of MB-MDR to detect the correct interacting pair,

SNP1�SNP2 (in the absence of GH) from error-free and noisy data
are shown in Figure 2. The actual numerical results of the power
profiles plotted in Figure 2 are presented in Supplementary Table S1.
This table also includes the corresponding empirical power estimates
related to main effects adjusted analyses.
In the absence of any adjustment for lower-order genetic effects

(ie, main effects), we notice that power profiles largely follow the same
trajectory, except in the presence of 50% phenotypic mixture (PM50).
For all scenarios of p, power increases with increasing g2 (Figure 2 and
Supplementary Table S1). Moreover, the power of MB-MDR (ranging
from 54 to 100%, p¼0.1, 38–100%, p¼0.25, 33–100%, p¼0.5 under
M170 and from 44 to 100%, p¼0.1, 43–100%, p¼0.25, 39–100%,
p¼0.5 under M27 for error-free data; Supplementary Table S1) is
hardly affected by introducing small percentages of missing genotypes
(MG5 in Figure 2), irrespective of the epistasis model under investiga-
tion. Power estimates for MG5 range from 42 to 100%, p¼0.1,
33–100%, p¼0.25, 28–100%, p¼0.5 and from 33 to 100%, p¼0.1,
34–100%, p¼0.25, 31–100%, p¼0.5 under M170 and M27, respec-
tively (Supplementary Table S1). For MG10, power obviously reduces
further, but not in a dramatic way compared to MG5: power estimates
reduce to a minimum of 31%, p¼0.1, 25%, p¼0.25, 25%, p¼0.5 and

Table 2 Type I error percentages for data generated under the general

null hypothesis of no genetic association in the absence and presence

of noise

Main effects correction

p Noisiness No correction Additive Co-dominant

0.1 None 0.055 0.055 0.049

0.25 None 0.051 0.038 0.036

0.5 None 0.054 0.039 0.030

0.1 MG5 0.046 0.039 0.038

0.25 MG5 0.051 0.034 0.036

0.5 MG5 0.052 0.044 0.047

0.1 MG10 0.046 0.041 0.041

0.25 MG10 0.054 0.043 0.043

0.5 MG10 0.048 0.045 0.038

0.1 GE5 0.051 0.037 0.037

0.25 GE5 0.048 0.038 0.036

0.5 GE5 0.038 0.035 0.031

0.1 GE10 0.049 0.037 0.032

0.25 GE10 0.049 0.033 0.031

0.5 GE10 0.054 0.039 0.039

MG5 (MG10)¼5% (10%) missing genotypes and GE5 (GE10)¼5% (10%) genotyping errors.

Figure 2 Empirical power estimates of MB-MDR as the percentage of analyses where the correct interaction (SNP1�SNP2) is significant at the 5% level, for

error-free and noise-induced simulation settings. Results are shown for MB-MDR analysis without main effects adjustment and simulated scenarios other

than GH.
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to a minimum of 31%, p¼0.1, 28%, p¼0.25, 22%, p¼0.5 for M170
and M27, respectively). When 5% genotyping errors are introduced in
the population, systematically lower power curves are obtained than
that in the presence of randomly missing genotypes. However, high
percentages of genotyping error (GE10) or high percentages of
phenotypic mixture (PM50) generally lead to the lowest power
performance of MB-MDR (Figure 2). Power estimates in the presence
of 10% genotyping errors are in the range of 12–100%, p¼0.1,
8–100%, p¼0.25, 12–100%, p¼0.5 for model M170 and in the
range of 9–100%, p¼0.1, 20–100%, p¼0.25, 26–100%, p¼0.5 for
model M27 (Supplementary Table S1). High percentages of pheno-
typic mixture have a negative impact on MB-MDR power, which is
also indicated by the minimally observed empirical power estimates
for PM50. Power estimates for the latter are in the range of 3–98%,
p¼0.1, 3–97%, p¼0.25, 2–95%, p¼0.5 for M170 and in the range of
3–95%, p¼0.1, 2–97%, p¼0.25, 3–95%, p¼0.5 for M27.
Not surprisingly, there is a higher chance of identifying epistasis

models for analyses without main effects correction as compared to
analyses that do account for lower-order effects. The latter epistasis
models usually involve other SNPs pairing with one of the functional
SNPs (results not shown) and should therefore be considered as false
positives. Empirically estimated false-positive percentages, for a variety
of scenarios, excluding GH settings, are reported in Supplementary
Table S2 (‘No Correction’ versus ‘Main Effects Correction’ estimates).
For error-free data, and no adjustments for main effects, the false-
positive percentage of MB-MDR of identifying a significant epistasis
model not involving the actual functional pair of SNPs ranges from
28 to 100%, p¼0.1, 6–53%, p¼0.25, 6–7%, p¼0.5 for M170 and from
15 to 99%, p¼0.1, 26–100%, p¼0.25, 38–100%, p¼0.5 for M27. When

main effects are accounted for in error-free data, the false-positive
percentage ranges from 3 to 39%, p¼0.1, 3–12%, p¼0.25, 3–6%,
p¼0.5 under M170 and from 3 to 7%, p¼0.1, 3–21%, p¼0.25, 2–98%,
p¼0.5 under M27 (Supplementary Table S2). In general, Supplemen-
tary Table S2 shows that irrespective of how the main effects adjust-
ment is performed (using an additive or co-dominant model) and
irrespective of the type of noisiness introduced, false-positive percen-
tages are typically lower than their ‘uncorrected’ counterparts.

The impact of appropriately correcting an epistasis analysis for
lower-order effects
Profiles for the empirical power estimates of MB-MDR to detect the
correct two functional loci from error-free data with (additive and
co-dominant) main effects correction and without main effects
adjustment are plotted in Figure 3. Here, we observe that the power
to identify the correct causal pair is reduced when a main effects
correction is performed, with the lowest power levels obtained
for co-dominant correction. The discrepancy between additive and
co-dominant main effects adjustment is particularly pronounced for
M27 and p¼0.5. For M170 and p¼0.5, the nature of the lower-order
effects adjustment has virtually no influence on power. Power profiles
for different sources of noise, according to main effects adjustment
method, are given in Supplementary Figure S1-i (missing genotypes),
Supplementary Figure S1-ii (genotyping errors) and Supplementary
Figure S1-iii (phenotypic mixture). The empirical power estimates
used to generate Supplementary Figure S1 are also presented in
Supplementary Table S1. Here, drawing conclusions is more subtle,
although generally speaking, empirical power estimates are smaller
with co-dominant correction as opposed to additive correction.

Figure 3 Empirical power estimates of MB-MDR as the percentage of analyses where the correct interaction (SNP1�SNP2) is significant at the 5% level, for

error-free simulation settings. Legend: no main effects adjustment (—), main effects adjustment via additive coding (y) and co-dominant coding (- - -).
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Numerical values on the effect of using different main effects
adjustments on the false-positive percentage to identify incorrect
two-locus models can be derived from Supplementary Table S2. For
error-free data, the false-positive percentages after additive main
effects correction range from 5 to 39%, p¼0.1, 5–12%, p¼0.25,
3–6%, p¼0.5 for M170 and from 4 to 7%, p¼0.1, 4–21%, p¼0.25,
9–98%, p¼0.5 for M27. Using co-dominant coding to adjust for
lower-order effects, the false-positive percentages range from 3 to 6%,
p¼0.1, 3–4%, p¼0.25 or p¼0.5 for M170 and from 3 to 6%, p¼0.1,
3–3%, p¼0.25 and from 2 to 4%, p¼0.5 for M27. In fact, the practice
of correcting an MB-MDR epistasis analysis using a co-dominant
main effects model has the tendency to be over-conservative
(Supplementary Table S2).

Genetic heterogeneity
So far, we have not yet discussed the performance of MB-MDR for
quantitative traits in the presence of GH. Figure 4 shows empirical
power curves to identify true genetic interactions in the presence
of GH for a variety of simulation settings. Results are shown for
MB-MDR analysis without main effects correction (Figure 4, row 1 for
M170 and row 3 for M27) and with main effects correction (additive
coding) adjustment (Figure 4, row 2 for M170 and row 4 for M27).
As in non-GH settings, power estimates are larger when no correction
for main effects is performed than when main effects are accounted
for, with generally the most severe power loss observed for
co-dominant main effects correction. However, when the contribution
of main effects to the total genetic variance is ignored, false-positive

Figure 4 Empirical power estimates of MB-MDR as the percentage of analyses where the correct interactions (SNP1�SNP2) and/or (SNP3�SNP4) are

significant at the 5% level, in the presence of GH. First 2 rows: MB-MDR without and with main effects correction for model M170, respectively. Last

2 rows: MB-MDR without and with main effects correction for model M27, respectively. Main effects are corrected for via additive coding. Different

definitions for power are adopted: power to identify both interacting pairs SNP1�SNP2 and SNP3�SNP4 (cyan); power to identify SNP1�SNP2 (black);

power to identify SNP3�SNP4 (magenta), power to identify at least one of the interactive pairs (coral).
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percentages rise as well, ranging from 7 to 100% for M27 and from
4 to 97% for M170. When we adjust for main effects (additive coding),
power estimates to identify the first pair (SNP1�SNP2) drop to less
than 50% for both M27 and M170, with the exception of M170. For
the latter, and a genetic variance of 0.1, MB-MDR power is estimated
to be 95 and 92% for p¼0.25 and 0.5, respectively. Under a co-
dominant correction, power estimates drop to less than 7% for both
models, with the exception of p¼0.25 or 0.5 and g2¼0.05 or 0.1. For
the latter, power is estimated to be 15 and 26% for M170 and M27,
respectively when p¼0.1 and g2¼0.1. For M27, power¼31%, p¼0.25
and g2¼0.1. For M170, p¼0.25 or 0.5, power estimates are around 30
and 88% for g2¼0.05 and 0.1, respectively. Detailed information about
empirical power estimates are given in Supplementary Table S6.

DISCUSSION

Understanding the effects of genes on the development of complex
diseases is a major aim of genetic epidemiology. Several studies have
indicated that MDR has good power to identify gene–gene interac-
tions in both simulated and real-life data.9 Although MB-MDR has
profiled itself as a promising extension of MDR accommodating study
designs that are more complex than unrelated case–control set-
tings,2,3,5,6 a thorough investigation of its full potential, under a
variety of real-life distorting factors, such as missing genotypes,
genotyping errors, phenotypic mixtures and last but not least GH,
has never been carried out in the context of quantitative traits. This
study has evaluated the power of MB-MDR, for quantitative traits and
unrelated individuals, in identifying gene–gene interactions for two
different epistasis models. Scenarios with and without noisy data, as
well as epistasis screening with and without lower-order effects
adjustments, have been considered. Although our simulations only
involved 10 SNPS, conclusions about observed patterns largely remain
the same when increasing the number of genetic markers (results not
shown). Note that an increasing number of SNPs will lead to an
increasing number of interacting pairs, resulting in an elevated multi-
ple testing burden, and hence resulting in reduced power. A first
important finding is that MB-MDR adequately deals with one of the
most major concerns in genetic association analysis studies (especially
those targeting higher-order gene–gene interactions), namely avoiding
that the overall type I rate is out of control (Table 2). The apparent
slightly conservative results, obtained when MB-MDR screening
explicitly accounts for lower-order main effects, are not surprising.
Indeed, under the general null hypothesis of no genetic association,
adjusting for main effects involves over-fitting and hence unnecessary
over-correction. However, all the empirical estimates of the MB-MDR
type I error rate in Table 2 fall within the interval (0.025, 0.075),
satisfying Bradley’s11 liberal criterion of robustness. This criterion
requires that the type I error rates are controlled for any level a of
significance, if the empirical type I error rate â is contained in the
interval 0.5arâr1.5a. We remark that as MB-MDR assesses global
significance using resampling-based maxT-adjusted P-values, the
family-wise error rate will always be weakly controlled at 5%, provided
the assumptions of the Westfall and Young approach7 are attained.
A second important finding is that MB-MDR’s power performance

under different scenarios can be largely explained by the quantification
of the actual genetic variance sgen2 and by the decomposition of the
total genetic variance into contributions of main effects and epistasis,
and/or by the decomposition of main effects into additive and
dominance variance. Empirical decompositions based on classical
variance component analysis of Sham12 are reported in Supplemen-
tary Tables S3 for M170 and Supplementary Tables S4 for M27 in the
absence of GH, and in Supplementary Table S5 in the presence of GH.

Each of these estimates is based on simulation setting’s sample size
(750 000 individuals). These results support our theoretically derived
variance components, which are summarized in Table 3 (details to be
provided elsewhere).
In particular, the observed lowest power performances of non-GH

settings for GE10 and PM50 can be explained by the fact that over-
representation of the minor allele as well as introducing phenotypic
mixture result in a loss of actual genetic variance (Table 1) and
therefore a loss of power. The theoretical results, indicating that a 50%
reduction in total genetic variability is established when 50% pheno-
typic mixture is introduced in error-free data (Table 1), are supported
by our empirical results (eg, Supplementary Table S3 for M170 and
Supplementary Table S4 for M27) comparing sgen2 with g2.
When 50% GH is present, theory supports our empirical results in

that the total actual genetic variance due to the two causal pairs of
markers is twice the total actual genetic variance due to a single pair
(Supplementary Table S5). Moreover, as we have introduced two
possible genetic routes for an individual to be genetically predisposed
for the trait of interest under GH (route 1 via SNP1�SNP2 or route
2 via SNP3�SNP4), the actual genetic variance in the pooled data will
be half the genetic variance in the error-free data (see also Supple-
mentary Table S5-ii for M170 and Supplementary Table S5-iv for
M27). The total genetic variance due to a single causal pair approx-
imates g2/4 (Supplementary Tables S5-i and S5-iii), which is due to the
fact that the two pairs have the same minor allele frequencies.
Therefore, the theoretical genetic variance is split between the two
pairs and thereafter between the two SNPs. MB-MDR was shown to
be rather robust in the presence of missing genotypes and genotyping
error. Note that MB-MDR handles missing genotypes by using all
available cases for the SNP pair under investigation. Hence, no
individuals with missing data are a priori removed from the analysis,
except when functional SNPs that are adjusted for in regression
models have (partially) missing information.
A third finding is that accounting for important lower-order genetic

effects in epistasis screening should be made standard. There is

Table 3 Theoretically derived proportions of the genetic variance in

error-prone or -free data due to main effects (additive and dominance)

or epistasis

smain
2/sgen2 sepi2/sgen2

Model p GE5 GE10 Other GE5 GE10 Other

M27 0.1 0.373 0.420 0.319 0.627 0.580 0.681

0.25 0.635 0.659 0.609 0.365 0.341 0.391

0.5 0.865 0.873 0.857 0.135 0.127 0.143

M170 0.1 0.650 0.701 0.581 0.350 0.299 0.419

0.25 0.139 0.161 0.118 0.861 0.839 0.882

0.5 0.000 0.000 0.000 1.000 1.000 1.000

sadd 2/smain
2 sdom2/smain

2

Model p GE5 GE10 Other GE5 GE10 Other

M27 0.1 0.957 0.979 0.947 0.043 0.021 0.053

0.25 0.865 0.884 0.857 0.135 0.116 0.143

0.5 0.680 0.698 0.667 0.320 0.302 0.333

M170 0.1 0.837 0.898 0.780 0.163 0.102 0.220

0.25 0.447 0.502 0.400 0.553 0.498 0.600

0.5 0.957 0.979 0.947 0.043 0.021 0.053

Results are presented for 5 and 10% GE scenarios. ‘Other’ scenarios refer to error-free settings,
MG5, MG10, PC25, PC50 and GH50.
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a debate about how to best model and test for both main effects and
interactions or for interactions only when epistasis is present.13

Although a fully non-parametric screening approach (eg, such as
MDR) is beautiful in that it does not require specifying particular
genetic models, there is still a need to adjust for lower-order genetic
effects via a parametric paradigm when targeting significant gene–gene
interaction models. The MB-MDR offers a flexible framework to make
these adjustments. For MDR-like applications other than MB-MDR,
this is far from obvious. For instance, MDR for binary traits,
Ritchie et al 9 does not accommodate taking corrective measures for
lower-order effects. Although significant main effects can be filtered
out before an MDR screening, this happens at the cost of missing out
on genuinely true interactions.
Furthermore, examining the decomposition of the total genetic

variance has shed more light on the scenarios in which an adjusted
MB-MDR analysis is warranted. For instance, when the minor allele
frequency of the causal loci is 0.5, model M170 is a pure epistatic
model (Supplementary Table S3: empirical estimates sepi2/sgen2

approximate 1). Hence, in this scenario the effects of correcting for
main effects are taken to the extreme. Clearly, any correction for
lower-order effects would be an over-correction. On the other hand, as
there is no true evidence for main effects in this model, any adjust-
ment for main effects will only remove a small portion of the
variability (Supplementary Table S3: M170, p¼0.5; empirical estimates
of smain

2/sgen2 are close to zero), resulting in false positives for the
corrective analysis that are similar to those for the un-corrective
analysis (Supplementary Table S2: M170, p¼0.5; empirical estimates
close to 5% also when not adjusting for main effects). In effect, the
contribution of main effects becomes increasingly important with
increasing p for M27 (E32%, p¼0.1, E61%, p¼0.25 and E85%,
p¼0.5) and the reverse holds for M170 (E59%, p¼0.1, E11%,
p¼0.25 andE0%, p¼0.5) (Table 3, Supplementary Tables S3 and S4).
For model M170 and GH scenarios involving p either 0.25 or

0.5 for the causal pairs, the epistatic variance explains a relatively large
proportion of the total genetic variance in the data (sepi2/sgen2487%;
Supplementary Table S5-ii), and correcting for main effects therefore
has little effect on power. In contrast, for Model M170 and p¼0.1 for
the causal pairs, main effects do make an important contribution to
the total genetic variance (smain

2/sgen2457%; Supplementary Tables
S5-i and S5-ii) compared with epistasis effects, which translates into a
severe empirical power loss and power is dramatically reduced when
proper accountancy for lower-order effects is being made (Figure 4).
Summarizing, dealing with phenotypic mixtures and GH will

remain challenging for epistasis screening methods, for some time
to come. Our empirical results suggest that more work is needed to
better accommodate these particularities. Benefits may be gained from
identifying the trait-specific factors (genetic or non-genetic) that best
characterize mixed phenotypic populations. For GH, the genes in
which the loci are present can be part of different etiological pathways
leading to the same disease or be part of the same pathway. According
to Heidema et al,14 irrespective of the biological mechanism that gives
rise to GH, the association of the loci with the disease will be reduced
if the total sample is used for measuring the association, as was done
in this study. A method that is not robust in the presence of GH will
most likely suffer from a decrease in power to detect genetic effects.
As our main effects corrective analyses have suggested, a way forward

may be to use methods to identify the latent classes and to adapt the
epistasis screening accordingly.
Finally, any epistasis screening should properly account for lower-

order effects to be able to claim that an identified interaction involves
a significant epistatic contribution to the total genetic variance.

Software
The implementation of MB-MDR used in this paper was coded
in C++. It is available upon request from the first author (jmahachie@
ulg.ac.be).
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