Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The changing hail threat over North America in response to anthropogenic climate change

Abstract

Anthropogenic climate change is anticipated to increase severe thunderstorm potential in North America, but the resulting changes in associated convective hazards are not well known. Here, using a novel modelling approach, we investigate the spatiotemporal changes in hail frequency and size between the present (1971–2000) and future (2041–2070). Although fewer hail days are expected over most areas in the future, an increase in the mean hail size is projected, with fewer small hail events and a shift toward a more frequent occurrence of larger hail. This leads to an anticipated increase in hail damage potential over most southern regions in spring, retreating to the higher latitudes (that is, north of 50° N) and the Rocky Mountains in the summer. In contrast, a dramatic decrease in hail frequency and damage potential is predicted over eastern and southeastern regions in spring and summer due to a significant increase in melting that mitigates gains in hail size from increased buoyancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial changes in hail diameter classes for spring and summer.
Figure 2: Spatial changes in hail metrics for spring and summer.
Figure 3: Month of maximum AKE and future changes.
Figure 4: Histograms for present and future hail diameter and MLCIN over the Colorado and High Plains (CHP) ecoregion.
Figure 5: Histograms for present and future hail diameter and MLCIN over the southern temperate forest (STF) ecoregion.

Similar content being viewed by others

References

  1. Dessens, J. Severe convective weather in the context of nighttime global warming. Geophys. Res. Lett. 22, 1241–1244 (1995).

    Article  Google Scholar 

  2. Del Genio, A. D., Yao, M. S. & Jonas, J. Will moist convection be stronger in a warmer climate? Geophys. Res. Lett. 34, L16703 (2007).

    Article  Google Scholar 

  3. Trapp, R. J. et al. Changes in severe thunderstorm frequency during the 21st century due to anthropogenically enhanced global radiative forcing. Proc. Natl Acad. Sci. USA 104, 19719–19723 (2007).

    Article  CAS  Google Scholar 

  4. Trapp, R. J., Diffenbaugh, N. S. & Gluhovsky, A. Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations. Geophys. Res. Lett. 36, L01703 (2009).

    Article  Google Scholar 

  5. Van Klooster, S. L. & Roebber, P. J. Surface-based convective potential in the contiguous United States in a business-as-usual future climate. J. Clim. 22, 3317–3330 (2009).

    Article  Google Scholar 

  6. Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013).

    Article  Google Scholar 

  7. Diffenbaugh, N. S., Scherer, M. & Trapp, R. J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl Acad. Sci. USA 101, 16361–16366 (2013).

    Article  Google Scholar 

  8. Gensini, V. A., Ramseyer, C. & Mote, T. L. Future convective environments using NARCCAP. Int. J. Climatol. 34, 1699–1705 (2014).

    Article  Google Scholar 

  9. Gensini, V. A. & Mote, T. L. Downscaled estimates of late 21st century severe weather from ccsm3. Climatic Change 129, 307–321 (2015).

    Article  Google Scholar 

  10. Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).

    Article  Google Scholar 

  11. Paquin, D., de Elía, R. & Frigon, A. Change in North American atmospheric conditions associated with deep convection and severe weather using CRCM4 climate projections. Atmosphere 52, 175–190 (2014).

    Google Scholar 

  12. Tippett, M., Allen, J. T., Gensini, V. A. & Brooks, H. E. Climate and hazardous convective weather. Curr. Clim. Change Rep. 1, 60–73 (2015).

    Article  Google Scholar 

  13. Mohr, S., Kunz, M. & Keuler, K. Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. 120, 3939–3956 (2015).

    Google Scholar 

  14. Jewell, R. & Brimelow, J. C. Evaluation of Alberta hail growth model using severe hail proximity soundings from the United States. Weath. Forecast. 24, 1592–1609 (2009).

    Article  Google Scholar 

  15. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 582 (IPCC, Cambridge Univ. Press, 2012).

  16. National Academies of Sciences, Engineering, and Medicine Attribution of Extreme Weather Events in the Context of Climate Change (National Academies, 2016).

  17. Ilotoviz, E., Khain, A. P., Benmoshe, N., Phillips, V. T. J. & Ryzhkov, A. V. Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm. J. Atmos. Sci. 73, 109–144 (2016).

    Article  Google Scholar 

  18. Loftus, A. M., Cotton, W. R. & Carrió, G. G. A triple moment hail bulk microphysics scheme. Part 1: Description and initial evaluation. Atmos. Res. 149, 35–57 (2014).

    Article  Google Scholar 

  19. Allen, J. T., Tippett, M. K. & Sobel, A. H. An empirical model relating US monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst. 7, 226–243 (2015).

    Article  Google Scholar 

  20. Kapsch, M. L., Kunz, M., Vitolo, R. & Economou, T. Long-term variability of hail-related weather types in an ensemble of regional climate models. J. Geophys. Res. 117, D15 107 (2012).

    Article  Google Scholar 

  21. Botzen, W. J. W., Bouwer, L. M. & van den Bergh, J. C. J. M. Climate change and hailstorm damage: empirical evidence and implications for agriculture and insurance. Resour. Energy Econ. 32, 341–362 (2010).

    Article  Google Scholar 

  22. Trapp, R. J. & Hoogewind, K. A. The realization of extreme tornadic storm events under future anthropogenic climate change. J. Clim. 29, 5251–5265 (2016).

    Article  Google Scholar 

  23. Mohr, S. & Kunz, M. Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe. Atmos. Res. 123, 211–228 (2013).

    Article  Google Scholar 

  24. Leslie, L. M., Leplastrier, M. & Buckley, B. W. Estimating future trends in severe hailstorms over the Sydney Basin: a climate modelling study. Atmos. Res. 87, 37–51 (2008).

    Article  Google Scholar 

  25. Sanderson, M. et al. Projected changes in hailstorms during the 21st century over the UK. Int. J. Climatol. 35, 15–24 (2014).

    Article  Google Scholar 

  26. Niall, S. & Walsh, K. The impact of climate change on hailstorms in Southeastern Australia. Int. J. Climatol. 25, 1933–1952 (2005).

    Article  Google Scholar 

  27. Mahoney, K., Alexander, M. A., Thompson, G., Barsugli, J. J. & Scott, J. D. Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Clim. Change 2, 125–131 (2012).

    Article  Google Scholar 

  28. Mearns, L. O. et al. The North American regional climate change assessment program: overview of phase I results. Bull. Am. Meteorol. Soc. 93, 1337–1362 (2012).

    Article  Google Scholar 

  29. Brimelow, J. C., Reuter, G. W. & Poolman, E. R. Modeling maximum hail size in Alberta thunderstorms. Weath. Forecast. 17, 1048–1062 (2002).

    Article  Google Scholar 

  30. A Special Report on Emissions Scenarios (eds Nakićenović, N. & Swart, R.) 599 (Cambridge Univ. Press, 2000).

  31. Etkin, D. & Brun, S. E. A note on Canada’s hail climatology: 1977–1993. Int. J. Climatol. 19, 1357–1373 (1999).

    Article  Google Scholar 

  32. Xie, B., Zhang, Q. & Wang, Y. Observed characteristics of hail size in four regions in China during 1980–2005. J. Clim. 23, 4973–4982 (2010).

    Article  Google Scholar 

  33. Rasmussen, R. M. & Heymsfield, A. J. Melting and shedding of graupel and hail. Part I: model physics. J. Atmos. Sci. 44, 2754–2763 (1987).

    Article  Google Scholar 

  34. Doswell, C. A. III, Brooks, H. E. & Kay, M. P. Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Weath. Forecast. 20, 577–595 (2005).

    Article  Google Scholar 

  35. Allen, J. T. & Tippett, M. K. The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteorol. 10, 1–31 (2015).

    Google Scholar 

  36. Dessens, J., Berthet, C. & Sanchez, J. L. Change in hailstone size distributions with an increase in the melting level height. Atmos. Res. 158, 245–253 (2015).

    Article  Google Scholar 

  37. Eccel, E., Cau, P., Riemann-Campe, K. & Biasioli, F. Quantitative hail monitoring in an alpine area: 35-year climatology and links with atmospheric variables. Int. J. Climatol. 32, 503–517 (2011).

    Article  Google Scholar 

  38. Giorgi, F., Jones, C. & Asrar, G. R. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol. Organ. Bull. 58, 175–183 (2009).

    Google Scholar 

  39. Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weath. Rev. 139, 1305–1322 (2011).

    Article  Google Scholar 

  40. Cecil, D. J. & Blankenship, C. B. Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Clim. 25, 687–703 (2012).

    Article  Google Scholar 

  41. Cintineo, J. L., Smith, T. M., Lakshmanan, V., Brooks, H. E. & Ortega, K. L. An objective high-resolution hail climatology of the contiguous United States. Weath. Forecast. 27, 1235–1248 (2012).

    Article  Google Scholar 

  42. Ferraro, R., Beauchamp, J., Cecil, D. & Heymsfield, G. A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU). Atmos. Res. 163, 24–35 (2015).

    Article  Google Scholar 

  43. Sanderson, M. G., Hemming, D. L. & Betts, R. A. Regional temperature and precipitation changes under high-end (≥ 4 °C) global warming. Phil. Trans. R. Soc. A 369, 85–98 (2011).

    Article  CAS  Google Scholar 

  44. Guinard, K., Mailhot, A. & Caya, D. Projected changes in characteristics of precipitation spatial structures over North America. Int. J. Climatol. 35, 596–612 (2015).

    Article  Google Scholar 

  45. Brimelow, J. C. & Reuter, G. W. Explicit forecasts of hail occurrence and expected hail size using the GEM–HAILCAST system with a rainfall filter. Weath. Forecast. 24, 935–945 (2009).

    Article  Google Scholar 

  46. Strong, G. & Lozowski, E. P. An Alberta study to objectively measure hailfall intensity. Atmosphere 15, 33–53 (1977).

    Article  Google Scholar 

  47. Heymsfield, A. J., Giammanco, I. M. & Wright, R. The terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett. 41, 8666–8672 (2014).

    Article  Google Scholar 

  48. Dessens, J. & Fraile, R. Hailstone size distributions in southwestern France. Atmos. Res. 33, 57–73 (1994).

    Article  Google Scholar 

  49. Mielke, P. W. Jr, Berry, K. J. & Brier, G. W. Application of multi-response permutation procedures for examining seasonal changes in monthly mean sea-level pressure patterns. Mon. Weath. Rev. 109, 120–126 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Changing Cold Regions Network (CCRN) and the Natural Sciences and Engineering Research Council (NSERC) of Canada for their financial support. We are grateful to the North American Regional Climate Change Assessment Program (NARCCAP) for making the model data freely available and particularly to S. McGinnis for his assistance in obtaining the NARCCAP data. Finally, we are indebted to the following individuals: B. Bonsal, N. Taylor, G. Gascon, N. Sharp, A. Pankratz and S. Kehler.

Author information

Authors and Affiliations

Authors

Contributions

J.M.H., J.C.B. and W.R.B. conceived and designed the experiments. W.R.B. and J.C.B. analysed the data, and W.R.B. performed the experiments. J.C.B. wrote the paper and created the figures; W.R.B. and J.M.H. contributed to the interpretation of the data analyses and editing of the paper.

Corresponding author

Correspondence to Julian C. Brimelow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brimelow, J., Burrows, W. & Hanesiak, J. The changing hail threat over North America in response to anthropogenic climate change. Nature Clim Change 7, 516–522 (2017). https://doi.org/10.1038/nclimate3321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing