Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

HBV life cycle is restricted in mouse hepatocytes expressing human NTCP

Abstract

Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1–6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1–6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Heermann KH, Goldmann U, Schwartz W, Seyffarth T, Baumgarten H, Gerlich WH . Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 1984; 52: 396–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ott JJ, Stevens GA, Groeger J, Wiersma ST . Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012; 30: 2212–2219.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes SA, Wedemeyer H, Harrison PM . Hepatitis delta virus. Lancet 2011; 378: 73–85.

    Article  PubMed  Google Scholar 

  4. Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C . Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology 1995; 213: 292–299.

    Article  CAS  PubMed  Google Scholar 

  5. Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P . Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 1999; 73: 2052–2057.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chouteau P, Le Seyec J, Cannie I, Nassal M, Guguen-Guillouzo C, Gripon P . A short N-proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus. J Virol 2001; 75: 11565–11572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanchet M, Sureau C . Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 2007; 81: 5841–5849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le Duff Y, Blanchet M, Sureau C . The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol 2009; 83: 12443–12451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abou-Jaoude G, Sureau C . Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol 2007; 81: 13057–13066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schulze A, Gripon P, Urban S . Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007; 46: 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  11. Leistner CM, Gruen-Bernhard S, Glebe D . Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008; 10: 122–133.

    CAS  PubMed  Google Scholar 

  12. Salisse J, Sureau C . A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol 2009; 83: 9321–9328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012; 1: e00049.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meier A, Mehrle S, Weiss TS, Mier W, Urban S . Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology 2013; 58: 31–42.

    Article  CAS  PubMed  Google Scholar 

  15. Schieck A, Schulze A, Gahler C, Muller T, Haberkorn U, Alexandrov A et al. Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology 2013; 58: 43–53.

    Article  CAS  PubMed  Google Scholar 

  16. Yan H, Peng B, He W, Zhong G, Qi Y, Ren B et al. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol 2013; 87: 7977–7991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother 1997; 41: 1715–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang CH, Yuan Q, Chen PJ, Zhang YL, Chen CR, Zheng QB et al. Influence of mutations in hepatitis B virus surface protein on viral antigenicity and phenotype in occult HBV strains from blood donors. J Hepatol 2012; 57: 720–729.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Q, Ge S, Xiong J, Yan Q, Li Z, Hao X et al. A novel immunoassay for PreS1 and/or core-related antigens for detection of HBsAg variants. J Virol Methods 2010; 168: 108–113.

    Article  CAS  PubMed  Google Scholar 

  20. Tang H, McLachlan A . Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci USA 2001; 98: 1841–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, Friling T et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 2013; 501: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meier PJ, Stieger B . Bile salt transporters. Annu Rev Physiol 2002; 64: 635–661.

    Article  CAS  PubMed  Google Scholar 

  23. Alrefai WA, Gill RK . Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 2007; 24: 1803–1823.

    Article  CAS  PubMed  Google Scholar 

  24. Shiao T, Iwahashi M, Fortune J, Quattrochi L, Bowman S, Wick M et al. Structural and functional characterization of liver cell-specific activity of the human sodium/taurocholate cotransporter. Genomics 2000; 69: 203–213.

    Article  CAS  PubMed  Google Scholar 

  25. Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA . Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 2004; 286: G752–G761.

    Article  CAS  PubMed  Google Scholar 

  26. Seeger C, Mason WS . Sodium-dependent taurocholic cotransporting polypeptide: a candidate receptor for human hepatitis B virus. Gut 2013; 62: 1093–1095.

    Article  CAS  PubMed  Google Scholar 

  27. Guidotti LG, Matzke B, Schaller H, Chisari FV . High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69: 6158–6169.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raney AK, Eggers CM, Kline EF, Guidotti LG, Pontoglio M, Yaniv M et al. Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice. J Virol 2001; 75: 2900–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Scientific and Technological Major Project (2013ZX10002-002). We would like to thank Junzong Shao for editing our manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhuang, Q., Wang, Y. et al. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol 11, 175–183 (2014). https://doi.org/10.1038/cmi.2013.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2013.66

Keywords

This article is cited by

Search

Quick links