Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Is it time to revisit our current hematopoietic progenitor cell quantification methods in the clinic?

Abstract

In the clinical practice of hematopoietic SCT, the minimum numbers of cells required for a successful engraftment are defined on the basis of their CD45 and CD34 expression profiles. However, the quantity of earlier progenitors or CD34-positive cells at different differentiation stages within stem cell grafts is not generally taken into consideration. During the last decade, various teams have quantified the number of cells expressing various combinations of CD34, CD38, CD133, CD90 co-expression and/or aldehyde dehydrogenase functional capacity using flow cytometry. Some of these studies resulted in the greater appreciation that combinations of these Ags were associated with varied myeloid, erythroid and platelet engraftment rates whereas others showed that the relative absence or presence of these markers could define cells responsible for either short- or long-term engraftment. These findings were also extended to differences between progenitor cell populations found within BM vs peripheral or cord-blood grafts. Cells harvested from donors are also generally frozen and stored; thawed cells have variable levels of viability and functional capacity based on the time tested post thaw, which also can be assessed by flow cytometry. Finally, flow cytometry has the potential for analysis of cells carrying a mesenchymal stem cell phenotype, which may be quiescent within some of the stem cell products. This review will address the need for stem cell subpopulation quantification and summarize existing published data to identify some Ags and functional characteristics that can be applicable to daily clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas ED, Lochte Jr HL, Lu WC, Ferrebee JW . Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257: 491–496.

    Article  CAS  PubMed  Google Scholar 

  2. Zaucha JM, Gooley T, Bensinger WI, Heimfeld S, Chauncey TR, Zaucha R et al. CD34 cell dose in granulocyte colony stimulating factor mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft versus host disease after human antigen identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  3. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I . The ISHAGE guidelines for CD34 cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5: 213–226.

    Article  CAS  PubMed  Google Scholar 

  4. McKenzie J, Gan O, Doedens M, Wang JCY, Dick JE . Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunol 2006; 7: 1225–1233.

    Article  CAS  Google Scholar 

  5. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood stem cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  6. Heimfeld S . HLA-identical stem cell transplantation: is there an optimal CD34 cell dose? Bone Marrow Transplant 2003; 31: 839–845.

    Article  CAS  PubMed  Google Scholar 

  7. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demier T, Sanders J et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  8. Sezer O, Possinger K, Metzner B, Illiger HJ, Wattag M, Heit W et al. Optimal CD34+ cell dose in autologous peripheral-blood stem-cell transplantation. J Clin Oncol 2000; 18: 3319–3320.

    Article  CAS  PubMed  Google Scholar 

  9. Singh V, Krishnamurthy J, Duffey S, Meagher R, Villa M, Monreal J et al. Actual or ideal body weight to calculate CD34+ cell dose in patients undergoing autologous hematopoietic SCT for myeloma? Bone Marrow Transplant 2009; 43: 301–305.

    Article  CAS  PubMed  Google Scholar 

  10. Allan DS, Keeney M, Howson-Jan K, Popma J, Weir K, Bhatia M et al. Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 29: 967–972.

    Article  CAS  PubMed  Google Scholar 

  11. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI . Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997; 6: 447–455.

    Article  CAS  PubMed  Google Scholar 

  12. Haas R, Murea S . The role of granulocyte colony-stimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells. Cytokines Mol Ther 1995; 1: 249–270.

    CAS  PubMed  Google Scholar 

  13. Gertz MA . Current status of stem cell mobilization. Br J Haematol 2010; 150: 647–662.

    Article  CAS  PubMed  Google Scholar 

  14. Lemischka IR, Raulet DH, Mulligan RC . Developmental potential and dynamic behaviour of hematopoietic stem cells. Cell 1986; 45: 917–927.

    Article  CAS  PubMed  Google Scholar 

  15. Gronthos S, Zannettino AJW, Hay SJ, Shi S, Graves SE, Kortesidis A et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827–1835.

    Article  CAS  PubMed  Google Scholar 

  16. Chamberlain G, Fox J, Ashton B, Middleton J . Concise Review: Mesenchymal Stem Cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25: 2739–2749.

    Article  CAS  PubMed  Google Scholar 

  17. Allison MR, Islam S . Attributes of adult stem cells. J Pathology 2009; 217: 144–160.

    Article  Google Scholar 

  18. He Q, Wan C, Li G . Multi-potent mesenchymal stromal cells in blood. Stem Cells 2007; 25: 69–77.

    Article  CAS  PubMed  Google Scholar 

  19. Tarnok A, Ulrich H, Bocsi J . Phenotypes of stem cells from diverse origin. Cytometry 2010; 77A (Part A): 6–10.

    Article  Google Scholar 

  20. Preffer F, Dombkowski D . Advances in complex multiparameter flow cytometry technology: applications in stem cell research. Cytometry 2009: Part B (Clinical Cytometry) 76B: 295–314.

    Article  Google Scholar 

  21. Ratajczak MZ . Phenotypic and functional characterization of hematopoietic stem cells. Current Opin Hematol 2008; 15: 293–300.

    Article  Google Scholar 

  22. Shimazaki C, Sumikuma T, Inaba T . CD34+CD90+ cells and late hematopoietic reconstitution after autologous peripheral blood stem cell transplantation. Leuk Lymph 2004; 45: 661–668.

    Article  Google Scholar 

  23. Xie W, Wang X, Du W, Liu W, Qin X, Huang S . Detection of molecular targets on the surface of CD34+CD38- bone marrow cells in Myelodysplastic Syndromes. Cytometry A 2010; 77: 840–848.

    Article  PubMed  Google Scholar 

  24. Sonoda Y . Immunophenotype and functional characteristics of human primitive CD34-negative hematopoietic stem cells: The significance of the intra-bone marrow injection. J Autoimmun 2008; 30: 136–144.

    Article  CAS  PubMed  Google Scholar 

  25. Pratt G, Rawstron AC, English AE, Johnson RJ, Jack AS, Morgan GJ et al. Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve. Br J Haematol 2001; 114: 937–943.

    Article  CAS  PubMed  Google Scholar 

  26. Sumikuma T, Shimazaki C, Inaba T, Ochiai N, Okano A, Hatsuse M et al. CD34+/CD90+ cells infused best predict late haematopoietic reconstitution following autologous peripheral blood stem cell transplantation. Br J Haem 2002; 117: 238–244.

    Article  Google Scholar 

  27. Wallington-Beddoe CT, Gottlieb DJ, Garvin F, Antonenas V, Sartor MM . Failure to achieve a threshold dose of CD34+CD110+ progenitor cells in the graft predicts delayed platelet engraftment after autologous stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2009; 15: 1386–1393.

    Article  PubMed  Google Scholar 

  28. Jamie-Perez JC, Hernandez-Alcantara AE, Mendez-Ramirez N, Vasquez-Garza E, Cantu-Rodriguez OG, Gomez-Almaguer D . Mobilization kinetics of CD133+ hematoprogenitor cells for hematopoietic grafting. Transfusion 2009; 49: 532–535.

    Article  Google Scholar 

  29. Fallon P, Gentry T, Balber AE, Boulware D, Ianssen WE, Smilee R et al. Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol 2003; 122: 99–108.

    Article  PubMed  Google Scholar 

  30. Lioznov MV, Freiberger P, Kroger N, Zander AR, Fehse B . Aldehyde dehydrogenase activity as a marker for the quality of hematopoietic stem cell transplants. Bone marrow Transplant 2005; 35: 909–914.

    Article  CAS  PubMed  Google Scholar 

  31. Gunduz E, Demirel G, Bal C, Gulbas Z . Evaluation of mobilized peripheral stem cells according to CD34 and aldehyde dehydrogenase expression and effect of SSC lo ALDH br cells on hematopoietic recovery. Cytotherapy 2010; 12: 1006–1012.

    Article  PubMed  Google Scholar 

  32. Arber C, Halter J, Stern M, Rov A, Gratwohl A, Tichelli A . Graft source determines human hematopoietic progenitor distribution pattern within the CD34(+) compartment. Bone Marrow Transplant 2011; 46: 650–658.

    Article  CAS  PubMed  Google Scholar 

  33. Mizrak D, Brittan M, Alison MR . CD133: molecule of the moment. J Pathol 2008; 214: 3–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012.

    CAS  PubMed  Google Scholar 

  35. Christ O, Lucke K, Imren S, Leung K, Hamilton M, Eaves A et al. Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 2007; 92: 1165–1172.

    Article  CAS  PubMed  Google Scholar 

  36. Boxall SA, Cook GP, Pearce D, Bonnet D, El-Sherbiny YM, Blundell MP et al. Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells. Bone Marrow Transplant 2009; 43: 627–635.

    Article  CAS  PubMed  Google Scholar 

  37. Storms RW, Green PD, Safford KM, Niedzwiecki D, Cogle CR, Colvin OM et al. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 2005; 106: 95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Povsic TJ, Zavodni KL, Kelly FL, Zhu S, Goldschmidt-Clermont PJ, Dong C et al. Circulating progenitor cells can be reliably identified on the basis of aldehyde dehydrogenase activity. J Am Col Cardiol 2007; 50: 2243–2248.

    Article  CAS  Google Scholar 

  39. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Czeer MH et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 2004; 104: 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  40. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  41. Preffer FI, Dombkowski D, Sykes M, Scadden D, Yang YG . Lineage-negative side-population (SP) cells with restricted hematopoietic capacity circulate in normal human adult blood: immunophenotypic and functional characterization. Stem Cells 2002; 20: 417–427.

    Article  CAS  PubMed  Google Scholar 

  42. Pierre-Louis O, Clay D, Brunet de la Grange P, Blazsek I, Desterke C, Guerten B et al. Dual SP/ALDH functionalities refine the human hematopoietic Lin−CD34+CD38− stem/progenitor cell compartment. Stem Cells 2009; 27: 2552–2562.

    Article  CAS  PubMed  Google Scholar 

  43. Pearce DJ, Bonnet D . The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopooietic stem cells. Exp Hematol 2007; 35: 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  44. Ma I, Allan AL . The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 2011; 7: 292–306.

    Article  CAS  Google Scholar 

  45. Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 2007; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  46. Alison MR, Guppy NJ, Lim SML, Nicholson LJ . Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? J Pathol 2010; 222: 335–344.

    Article  PubMed  Google Scholar 

  47. Canaani J, Kollet O, Lapidot T . Neural regulation of bone, marrow, and the microenvironment. Front Biosci (Schol Ed) 2011; 3: 1021–1031.

    Article  Google Scholar 

  48. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  PubMed  Google Scholar 

  49. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  PubMed  Google Scholar 

  50. Gong JK . Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978; 199: 1443–1445.

    Article  CAS  PubMed  Google Scholar 

  51. Tolar J, Villeneuve P, Keating A . Mesenchymal stromal cells for graft-versus-host disease. Hum Gene Ther 2011; 22: 257–262.

    Article  CAS  PubMed  Google Scholar 

  52. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  53. Broxmeyer HE, Cooper S, Hass DM, Hathaway JK, Stehman FB, Hangoc G . Experimental basis of cord blood transplantation. Bone Marrow Transplant 2009; 44: 627–633.

    Article  CAS  PubMed  Google Scholar 

  54. Barker JN, Byam C, Scaradavou A . How I treat: the selection and acquisition of unrelated cord blood grafts. Blood 2011; 117: 2332–2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ, Weissman IL et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108: 5009–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rhee WJ, Bao G . Simultaneous detection of mRNA and protein stem cell markers in live cells. BMC Biotechnol 2009; 9: 30–40.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Awan A, Oliveri RS, Jensen PL, Christensen T, Andersen CY . Immunoflourescence and mRNA Analysis of Human Embryonic Stem Cells (hESCs) grown under feeder-free conditions. In: Turksen K. (ed). Human Embryonic Stem Cell Protocols, Methods in Molecular Biology. Humana Press: New York, NY, USA, 2010, pp 195–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Beksac.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beksac, M., Preffer, F. Is it time to revisit our current hematopoietic progenitor cell quantification methods in the clinic?. Bone Marrow Transplant 47, 1391–1396 (2012). https://doi.org/10.1038/bmt.2011.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2011.240

Keywords

Search

Quick links