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Introduction
The cardiac ryanodine receptor (RyR2) is a homotetrameric 
Ca2+ release channel located in the sarcoplasmic reticulum (SR) 
membrane[1, 2].  During the normal cardiac cycle, plasma mem-
brane depolarization initiates opening of L-type Ca2+ channels 
(LTCC), by which extracellular Ca2+ enters the cytoplasm.  Ca2+ 

infl ux acts as a trigger that subsequently activates RyR2 chan-
nels, leading to a ten-fold greater release of SR Ca2+ into the 
cytoplasm.  During systolic contraction of the heart, elevated 
cytoplasmic Ca2+ binds to troponin-C, allowing actin and myo-
sin to interdigitate and cause sarcomere shortening, thus caus-
ing myocardial contraction.  Diastolic relaxation occurs when 
cytoplasmic [Ca2+] decreases as Ca2+ is extruded through the 
Na+/Ca2+-exchanger (NCX) or is actively pumped back into 
the SR through the sarco/endoplasmic reticulum Ca2+-ATPase 
(SERCA2a)[3].  Concomitantly, myocardial relaxation is directly 
associated with diastolic reduction in Ca2+ levels.  Thus, physi-
ologic control of Ca2+ release from the SR is necessary for 
timely contraction and relaxation during the cardiac cycle.  
Pathological “leak” of Ca2+ during diastole may be detrimental 

and lead to cardiac arrhythmias[4, 5].  
There is now considerable evidence that abnormal RyR2-

mediated Ca2+ release from the SR can lead to both atrial[6, 7] 
and ventricular arrhythmias associated with sudden cardiac 
death[8–10].  Increased SR Ca2+ release during diastole can lead 
to activation of the Na+/Ca2+-exchanger[11], which in turn gen-
erates a transient inward current that can cause afterdepolar-
izations and triggered action potentials.  These afterdepolar-
izations have been observed in humans and have been directly 
linked to arrhythmogenesis in animal models of arrhyth-
mias[12].

Genetic susceptibility to cardiac arrhythmias may arise 
directly from genetic mutations in RyR2, such as in patients 
with catecholaminergic polymorphic ventricular tachycardia 
(CPVT)[9, 13].  Mutations in other proteins that bind to the pore-
forming subunits within the RyR2 macromolecular complex 
(eg, calsequestrin, junctophilin) also have been reported to 
confer genetic susceptibility to cardiac arrhythmias and/or 
cardiomyopathy[14, 15].  These observations provide direct evi-
dence that a perturbation in RyR2 function can facilitate the 
development of cardiac arrhythmias.

Additionally, acquired structural heart disease, for example 
heart failure or myocardial ischemia, has been shown to 
modify the post-translational regulation of RyR2 through 
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nitrosylation, oxidation, and phosphorylation, which might 
also increase susceptibility to diastolic Ca2+ release and 
arrhythmias[16–20].  Given that there are many excellent reviews 
on strategies to modify intracellular signaling to reduce RyR2 
activation[21, 22], we will restrict the scope of this review mainly 
to pharmacological strategies to stabilize RyR2 directly to 
reduce arrhythmic potential.  

Because RyR2 also plays an important role during excita-
tion-contraction coupling, it is important that antiarrhythmic 
compounds targeting the RyR2 channel complex will not 
interfere with systolic SR Ca2+ release.  At the same time, 
inhibition of diastolic SR Ca2+ release is a desirable feature of 
compounds that could prevent arrhythmias[22].  RyR2 activity 
can be modulated by numerous natural and pharmacological 
compounds, as reviewed elsewhere in more detail[22–24].  These 
compounds may modulate RyR2 in various ways, includ-
ing by modulating channel gating, ion channel translocation, 
RyR2 subunit composition, or posttranslational modifi cations.  
Some of these compounds have emerged as strong candidates 
for antiarrhythmic drugs, and will be discussed in more detail 
below.

Dantrolene
Dantrolene sodium is a hydrantoin derivative that was ini-
tially described as a muscle relaxant[25], but later found to be 
a potent therapeutic agent for patients suffering from the rare 
life-threatening condition known as malignant hyperthermia 
(MH)[26].  Patients susceptible to MH typically have inherited 
mutations in the type 1 ryanodine receptor (RyR1) primarily 
found in skeletal muscle[27].  Exposure to inhaled halogenated 
anesthetics during surgery can trigger massive RyR1-mediated 
Ca2+ release associated with muscle breakdown, elevation of 
serum creatinine kinase (CK), hypotension, hyperthermia, and 
tachycardia, which often results in intraoperative death [28].  
Dantrolene has been shown to directly bind to the N-terminus 
of RyR1 and to prevent SR Ca2+ leak in skeletal muscle, thereby 
improving clinical outcomes[29].  Dantrolene is believed to sta-
bilize interdomain interactions between the N-terminal and 
central domains of RyR1[30] and RyR2[31], although the effects 
of dantrole on single RyR channels remains controversial[32].

Given that dantrolene improves the stability of both RyR1 
and RyR2, dantrolene has become a molecule of interest for 
preventing cardiac arrhythmias.  Dantrolene has previously 
been described as an inhibitor of arrhythmias in animal mod-
els of ischemia-reperfusion[33–35].  More recently, dantrolene 
was demonstrated to inhibit catecholaminergic polymorphic 
ventricular tachycardia in a knock-in mouse model heterozy-
gous for mutation R2474S in RyR2[36] (Figure 1).  Dantrolene 
was shown to suppress isoproterenol-induced spontaneous 
SR Ca2+ releases (ie, sparks) in intact myocytes isolated from 
RyR2-R2474A/+ mice.  The mechanisms by which dantrolene 
prevented CPVT was attributed to stabilization of mutant 
RyR2 channels, and possibly also by preventing the PKA-
induced reduction in calmodulin binding to RyR2[37].  In this 
study, dantrolene did not exert any appreciable effects on 
cardiac function in hearts of wild-type mice.  However, dan-

trolene did correct defective interdomain interactions within 
RyR2 isolated from dogs with heart failure, associated with 
suppression of delayed afterdepolarizations[31].  

In other studies, dantrolene has been described to improve 
cardiac contractility in failing hearts, which may contribute 
to its role in reducing arrhythmias in structural heart disease.  
Congestive heart failure (CHF) has been associated with a 
negative force-frequency relationship (Bowditch effect) in fail-
ing myocardium.  Dantrolene has been shown to ameliorate 
the negative force-frequency relationship in explanted failing 
myocardial muscle strips by improving inotropic response to 
isoproterenol[38].  This improved contractility was not associ-
ated with overall changes in cytoplasmic [Ca2+], and was pos-
tulated to be associated with improvement of diastolic Ca2+ 
release.  Further evidence for reduction of Ca2+ release events 
in improved contractility was shown by Kobayashi et al[31], 
who examined the effects of dantrolene on cardiac function on 
failing hearts.  Dantrolene was shown to directly bind near the 
N-terminal domain in RyR2 at amino acids 601–620, a site crit-
ical for N-terminal and central domain interactions.  Whereas 
unzipping of N-terminal and central domains was associated 
with spontaneous SR Ca2+ leak, dantrolene suppressed both 
unzipping and SR Ca2+ leak (sparks) and ultimately delayed 
afterdepolarizations, which are common in heart failure.  
Additionally, dantrolene restores calmodulin (CaM) bind-
ing to RyR2, which is usually attenuated in heart failure[39].  
Thus, dantrolene appears to be a promising molecule to treat 
arrhythmias in patients with CPVT and may attenuate cardiac 
Ca2+ handling dysfunction associated with heart failure.

1,4-Benzothiazepines
The benzothiazepine derivative JTV519 (4-[3(1-(4-benzyl)
piperidinyl)propionyl]-7-methoxy-2,2,4,5-tetrahydro-1,4-
benzothiazepine; also known as K201) was fi rst identifi ed as a 
compound able to suppress intracellular Ca2+ overload associ-
ated with cardiac cell death[40].  The drug has been reported to 
have antiarrhythmic effects in a canine model of atrial fi bril-
lation due to sterile pericarditis[41] and Langendorff-perfused 
rat hearts subjected to ischemia-reperfusion[42, 43].  JTV519 
interacts with annexin-V and at higher doses inhibits various 
voltage-gated ion channels in the heart[44, 45].  Subsequently, it 
has become clear that RyR2 represents an important target of 
JTV519[46, 47].  

JTV519 was described to normalize RyR2 gating in dogs 
with tachycardia-induced heart failure[48].  In this study, Kohno 
et al[48] demonstrated that JTV519 reversed the SR Ca2+ release 
defects indicative of RyR2 dysfunction.  The concept of RyR2 
stabilization by FKBP12.6 was further supported by the fi nd-
ings that JTV519 treatment of dogs with pacing-induced heart 
failure increased the amount of FKBP12.6 immunoprecipi-
tated with RyR2[46].  Moreover, JTV519 was shown to prevent 
lethal ventricular arrhythmias in mice haploinsufficient for 
FKBP12.6 by increasing FKBP12.6 binding to RyR2[47] (Figure 
2).  The lack of effi cacy of JTV519 in FKBP12.6 defi cient mice 
suggests that FKBP12.6 binding to RyR2 is associated with the 
therapeutic effects of this compound[47].  On the other hand, 
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normalizing FKBP12.6 levels within the RyR2 macromolecu-
lar complex stabilizes the closed state of the channel, thereby 
preventing aberrant openings during diastole[5].  Follow-up in 
vitro studies of human RyR2 mutations found in patients with 
CPVT (P2328S, Q4201R, and V4653F) showed that JTV519 can 
also normalize mutant channel gating as evidenced by single 
channel recordings[49].  

There has been some controversy whether the antiarrhyth-
mic effects of JTV519 require modifi cation of RyR2-FKBP12.6 
interactions[50].  In a mouse model of CPVT caused by the 
R4496C mutation in RyR2, it was shown that this mutation 
did not alter FKBP12.6 binding affi nity for RyR2.  Moreover, 
JTV519 did not prevent delayed afterdepolarizations in myo-
cytes isolated from heterozygous RyR2-R4496C/+ mice[51].  
However, subsequent studies by other groups have shown 
that JTV519 did reduce the occurrence of spontaneous action 
potentials in ouabain-treated WT and RyR2-R4496/+ mouse 
myocytes, presumably independent of FKBP12.6[52].  Addition-
ally, in vitro studies in HEK293 cells suggest that JTV519 sup-
presses store-overload induced Ca2+ release independently of 
FKBP12.6 binding, though the relevance of these observations 
have yet to be determined in vivo[50].  Also, Yamamoto et al[53] 

reported that JTV519 directly bound to RyR2 between amino 
acids 2114 and 2149, and that JTV519 can normalize defective 
interdomain interactions associated with RyR2 dysfunction.

Recently S107, a new 1,4-benzothiazepine similar to JTV519, 
has been found to prevent ventricular arrhythmias in a CPVT 
mouse model heterozygous for mutation R2474S in RyR2[54].  
In contrast to JTV519, S107 has been reported to lack off-target 
activity for ion channels other than RyR2 at concentrations 
up to 10 mmol/L[54, 55].  S107 provided protection against epi-
nephrine-induced ventricular tachycardias caused by abnor-
mal SR Ca2+ leak in RyR2-R2474S/+ mice[54].  Further, S107 
was recently shown to be effective at preventing ventricular 
arrhythmias in the mdx mouse model of muscular dystro-
phy[56].  Thus, 1,4-benzothiazepine derivatives JTV519 and 
S107 hold promise as RyR2-stabilizing molecules that could 
reduce the risk of arrhythmias[57].  

Flecainide 
Flecainide is a trifl uoroethoxybenzamide that was discovered 
to be a potent antiarrhythmic agent in 1977[58].  Flecainide ini-
tially showed promise as an antiarrhythmic agent against both 
ventricular[59] and atrial arrhythmias[60].  Because a predomi-

Figure 1.  Dantrolene inhibits catecholaminergic polymorphic ventricular tachycardia in mice.  (A) Representative images of Ca2+ sparks in cardio-
myocytes isolated from heterozygous RyR2-R2474S/+ knock-in mice, showing that dantrolene reduces Ca2+ spark frequency following iso proterenol 
exposure.  (B) Bar graph showing that dantrolene suppresses abnormal Ca2+ spark frequency in RyR2-R2474S/+ mutant mice after iso proterenol 
exposure.  (C) Telemetric ECG recordings reveal exercise-induced ventricular tachycardia in a RyR2-R2474S/+ mouse, which was sup pressed by 
dantrolene.  (D) Bar graphs revealing that dantrolene sup presses the incidence of exercise or epinephrine induced ventricular tachy cardia (VT) in RyR2-
R2474S/+ mice.  Adapted from Kobayashi et al[36].
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Figure 2.  Anti-arrhythmic effects of 1,4-benzothiazepine JTV-519 in FKBP12.6+/– mice.  (A–B) Representative immunoblots and quantifi cations for 
RyR2, RyR2-pSer2809 (PKA phosphorylation site on RyR2), and calstabin2 (FKBP12.6) from wildtype (WT), calstabin2+/– heterozygous, and calstabin2–/– 
(FKBP12.6–/–) knockout mice.  Whereas exercise increased PKA phosphorylation of RyR2 and decreased calstabin2 (FKBP12.6) binding to RyR2, JTV-
519 prevented calstabin2 dissociation.  (C–D) Representative single channel recordings in planar lipid bilayers showing that JVT519 reduced the open 
probability of RyR2 isolated from calstabin2+/– but not calstabin2–/– mice, consistent with calstabin2 (FKBP12.6) being required for the therapeutic 
effects of JTV519.  (E–F) ECG tracings showing that JTV-519 reduces ventricular arrhythmias in calstabin2+/– but not calstabin2–/– mice.  *P<0.05. 
Adapted from Wehrens et al[47].
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nant mechanism of action on inactivation of voltage-gated Na+ 
channels, it was classifi ed as a type IC anti-arrhythmic drug.  
However, clinical trial results indicated that in patients with 
structural heart disease susceptible to ventricular arrhythmias, 
fl ecainide might in fact be pro-arrhythmogenic[61, 62].  

Recently, there has been a resurgence of enthusiasm for 
the use of fl ecainide in a select group of CPVT patients with 
genetic predisposition to ventricular arrhythmias and SCD.  
Watanabe et al[63] found that flecainide inhibited the RyR2 
channel by reducing the duration of RyR2 channel openings 
without affecting closed channel duration.  Flecainide reduced 
SR Ca2+ release events and triggered arrhythmic beats in a 
calsequestrin defi cient (Casq2-/-) mouse model of CPVT [63] (Fig-
ure 3).  Moreover, it was shown that flecainide significantly 
reduced the incidence of exercise-induced arrhythmias in 
patients with mutations in CASQ2[63].  Follow-up studies from 
the same group showed that flecainide reduced Ca2+ spark 
mass but increased spark frequency, resulting in a net neutral 
effect on SR Ca2+ leak and SR Ca2+ content[64].  This fi nding is 
distinct from the reported mechanism of tetracaine, another 
RyR2 channel blocking agent, which reduces Ca2+ sparks and 
SR leak, thereby increasing SR Ca2+ content.  Therefore, it was 
concluded that flecainide promoted block of the RyR2 open 
state, reducing the “probability of saltatory wave propagation 
between adjacent Ca2+ release units”[64].  

Other groups have applied these fi ndings to further delin-
eate the mechanism of arrhythmogenesis in another mouse 
model of CPVT.  Knock-in mice heterozygous for mutation 
R4496/+ in RyR2 were crossed with Cntn2-EGFP transgenic 
mice expressing a fl uorescent marker for the cardiac conduc-
tion system[65].  Whereas tetracaine reduced spontaneous SR 
Ca2+ release events in ventricular myocytes and Purkinje cells 
equally, fl ecainide more specifi cally targeted mutant RyR2 in 
Purkinje cells, implicating the Purkinje conduction system as 
a potent mediator of ventricular arrhythmias in CPVT.  Thus, 
fl ecainide may have a unique role in the prevention and sup-
pression of ventricular arrhythmias in patients with geneti-
cally inherited CPVT.  

Modulation of RyR2 posttranslational modifi cation
In addition to inherited mutations, RyR2 channel function may 
also be perturbed due to acquired changes in, for example, 
channel posttranslational modulation[2].  Xu et al[20] demon-
strated that increased S-nitrosylation leads to enhanced RyR2 
activity and promotes SR Ca2+ release.  Increased S-nitrosy-
lation of RyR2 has been associated with cardiac arrhythmias 
in a mouse model of Duchenne’s muscular dystrophy, and 
inhibition with S107 (see above) was shown to normalize both 
RyR1 and RyR2 function and prevent arrhythmias[56, 66].  In 
contrast, Gonzalez et al[17] demonstrated that decreased rather 

Figure 3.  Prevention of triggered arrhythmias by fl ecainide.  (A–B) Concentration-dependent effects of fl ecainide on single sheep RyR2 channels in 
lipid bilayers.  Flecainide decreases open probability (Po) and mean open time (To), and does not signifi cantly alter the mean closed time (Tc) of RyR2.  
*P<0.02, **P<0.01 and ***P<0.001. (C–D) Effects of fl ecainide on isoproterenol (ISO) stimulated calsequestrin-defi cient cardiomyocytes.  Whereas 
ISO evoked spontaneous SR Ca2+ release events (*), fl ecainide reduced the number of Ca2+ releases and triggered beats (†).  **P=0.0078 and ***P 
<0.001. (E) Cartoon illustrating dual effects of fl ecainide action on SR Ca2+ release (red tracing) and inhibition of premature beats triggered by delayed 
after depolarization (black tracing).  Adapted from Watanabe et al[63].
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than increased S-nitrosylation of RyR2 might promote SR Ca2+ 
leak and arrhythmogenesis.  One explanation of this appar-
ent paradox relates to  nitroso-redox imbance, a condition in 
which excess formation of reactive oxygen species (ROS) can 
modify the same thiols that are also target of S-nitrosylation[67].  
Indeed, Gonzalez et al[67] reported evidence for increased oxi-
dation of RyR2 associated with an increased tendency towards 
SR Ca2+ leak in rats with heart failure.  In this particular study, 
increased oxidative stress was primarily the result of enhanced 
xanthine oxidase (XO) activity.  Pharmacological inhibition of 
XO restored both the nitroso-redox imbalance and intracellular 
Ca2+ release defects in these rats with heart failure[67].  More-
over, Niggli’s group showed that anti-oxidants (ie, MPG and 
Mn-cpx3) normalized abnormal RyR sensitivity and hypersen-
sitive E-C coupling in dystrophic cardiomyocytes[68].

Increased oxidative stress might also promote activation of 
Ca2+/calmodulin-dependent protein kinase, which can phos-
phorylate RyR2 along with other Ca2+ handling proteins, and 
increase the propensity towards cardiac arrhythmias[69].  We 
have previously shown that CaMKII phosphorylation of RyR2 
leads to increased channel open probability[19].  Recently, we 
demonstrated that constitutive phosphorylation of RyR2 by 
CaMKII in RyR2-S2814D knock-in mice promoted abnormal 
SR Ca2+ release events associated with ectopic activity and 
ventricular arrhythmias[10].  On the other hand, genetic inhibi-
tion of RyR2 phosphorylation at S2814 in RyR2-S2814A knock-
in mice conferred protection against ventricular arrhythmias 
in mice with heart failure induced by transverse aortic band-
ing[10].  These studies suggest that inhibition of RyR2 phospho-
rylation by CaMKII might provide a very specifi c way of pre-
venting ventricular and also atrial arrhythmias[6].  Moreover, 
pharmacological inhibition of the enzyme CaMKII itself might 
also provide protection against arrhythmias[6, 70, 71].  

RyR2 is also regulated by protein kinase A (PKA) phospho-
rylation, and increased PKA phosphorylation of RyR2 has 
been observed in patients with atrial fibrillation[7].  Shan et 
al[57] demonstrated that mice in which RyR2 was constitutively 
by PKA (RyR2-S2808D knock-in mice) exhibited an increased 
open probability, more calcium sparks, and increased SR Ca2+ 
leak.  Inhibition of PKA phosphorylation of RyR2 in RyR2-
S2808A mice was shown to protect against catecholamine-
induced ventricular arrhythmias[72].  Although there are cur-
rently no drugs that specifi cally reduce RyR2 phosphorylation, 
beta blockers such as carvedilol have been shown to reduce 
RyR2 phosphorylation and thereby RyR2 open probability 
in patients with atrial fibrillation[73].  In addition, some beta 
blockers such as carvedilol also have antioxidant properties 
in addition to beta-adrenergic blockade, and may be useful in 
prolongation of arrhythmia-free survival in patients with con-
gestive heart failure versus beta blockers lacking anti-oxidant 
properties[74].  Clearly, further pharmacological studies would 
be needed to determine whether modulating post-translational 
modifications of RyR2 represents a suitable anti-arrhythmic 
strategy.  

Conclusions
Cardiac arrhythmias is a potentially life-threatening complica-
tion of genetic and structural heart disease.  Recent insights 
into excitation-contraction coupling have implicated release 
of SR Ca2+ through RyR2 as a key mechanism for the initiation 
and maintenance of both atrial and ventricular arrhythmias.  
RyR2-mediated release of SR Ca2+ is a tightly regulated pro-
cess that involves discrete release of Ca2+ during systole, and 
cessation of Ca2+ release during diastole.  For timely rhythmic 
release of Ca2+ from RyR2, the channel must succinctly open 
in response to cytoplasmic Ca2+ fl ux, but remain closed during 
diastolic SR Ca2+ fi lling.  Destabilization of RyR2 may occur as 
a result of genetic mutations (ie, CPVT) or acquired (eg, oxida-
tion, nitrosylation, phosphorylation) modifications, resulting 
in pathologic diastolic Ca2+ release, and subsequent arrhyth-
mias.  

Given the prominent role of RyR2 in SR Ca2+ release, phar-
macological strategies to modulate RyR2 stability and gating 
have shown great promise as a therapy for cardiac arrhyth-
mias.  Several drugs targeting RyR2, such as benzothiazepine 
derivatives and fl ecainide, bind RyR2 directly and reduce the 
open probability of RyR2, thereby reducing pathological SR 
Ca2+ “leak”.  As benzothiazepines and fl ecainide have an addi-
tional role in blockade of voltage-gated sodium channels and 
delayed rectifi er potassium channels, there may be an additive 
effect on anti-arrhythmic action, however further studies are 
necessary to evaluate whether this may occur independently 
of RyR2 blockade or enhancement of RyR2-FKBP12.6 binding.  
Additionally, dantrolene has been shown to bind directly to 
RyR2 and stabilize inter-domain regions, although the effects 
on RyR2 open probability are still controversial.  Each of these 
drugs has a unique mechanism of action, as dantrolene stabi-
lizes N-terminal and central domain interactions, benzothiaz-
epines increase FKBP12.6 (calstabin2) binding to RyR2 (among 
other mechanisms), and flecainide blocks the open state of 
the channel.  These drugs have proven particularly helpful in 
CPVT, in which stabilization of RyR2 reduces diastolic SR Ca2+ 
leak, and therefore reduces delayed afterdepolarizations.  

In patients with structural heart disease, such as in conges-
tive heart failure, acquired alterations in RyR2 function occur 
primarily due to post-translational modifi cation of the chan-
nel.  There is extensive evidence that hyperphosphorylation of 
RyR2 in heart failure also promotes the occurrence of SR Ca2+ 

leak[10, 18, 72, 75].  By genetic or pharmacological blockade of RyR2 
phosphorylation at CaMKII or PKA site, animal models have 
shown that effective arrhythmia prophylaxis is possible, espe-
cially under catecholaminergic conditions or after stress exer-
cise.  Recent insights also indicate that adverse redox remodel-
ing of RyR2 may predispose to cardiac arrhythmias.  Emerg-
ing data suggest that certain beta-adrenergic blocking agents, 
such as carvedilol, may also exert a redox-stabilizing effect on 
RyR2, which may potentially increase survival in patients with 
acquired heart disease.  Ultimately, these insights will guide 
the design of future studies in human patients, whereby stabi-
lization of the RyR2 channel might lead to improved outcomes 
in morbidity and mortality.  
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