
Effective size in simple metapopulation models

F Rousset
Laboratoire Génétique et Environnement, Institut des Sciences de l’Évolution, CC065, USTL, Place E. Bataillon, 34095 Montpellier
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A coalescent argument is used to derive the effective size in
simple models with recurrent local extinctions. Several
alternative methods of derivation of this result are given
and compared to earlier analyses of this problem. The
different methods described in this paper all give the same

result, which differs from earlier ones. For two published sets
of estimates of demographic parameters, metapopulation
structure appears to result in a moderate reduction of
effective size relative to total adult population size.
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Introduction

To determine the effects of local extinctions and
recolonizations on genetic diversity and effective size,
Slatkin (1977) defined two models, the ‘migrant pool’
and ‘propagule pool’ models. In the former, recolonizers
come from the whole metapopulation; in the latter, they
preferentially come from a single population. These
models were subsequently investigated by a number of
works (eg Wade and McCauley, 1988; Whitlock and
McCauley, 1990; Whitlock and Barton, 1997; Pannell and
Charlesworth, 1999). However, there are several inac-
curacies in the methods previously used to compute
effective size in these models. This short paper discusses
several methods for computing effective size. All of them
provide a single expression (equation (7)), which has not
been previously given. First, a simple coalescent argu-
ment for this result is provided. Then, alternative
derivations are used to explain discrepancies with earlier
works. The quantitative importance of these discrepan-
cies is briefly discussed. A Mathematica (Wolfram, 1999)
notebook performing the computations described in this
paper is available on request.

A simple coalescent argument

Effective size is defined to give the asymptotic rate of
coalescence of pairs of genes. For pairs of genes in
different demes, this rate can be deduced by a two-step
argument. First, the two ancestral lineages must gather in
the same deme. Then, they may coalesce or separate
again in different demes.

No local extinctions
In the island model without local extinctions, this
argument develops as follows. Let m be the dispersal
probability. The probability that two genes in different

demes come from a single deme in the previous
generation is

1� ð1�mÞ2

nd
þOð1=nd2Þ ð1Þ

where nd is the number of demes. Thus, on a timescale of
nd generations, the rate at which genes in different demes
come in a single deme is 1�(1�m)2. Then, the ancestral
lineages coalesce immediately on this time scale if they
have the same parent (probability: 1/N, where N is the
number of adults, here haploid, per deme), or if they
coalesce in this deme in a recent past, rather than
separate in different demes again. The probability of the
latter event may be written in terms of Wright’s FST
measure of population structure, as (1�1/N)FST, since in
the island model, FST is approximately (to O(1/nd)) the
probability of recent coalescence of genes within demes
(Hudson, 1998; Rousset, 2002). Then, the overall rate of
coalescence is

ð1� ð1�mÞ2Þ 1

N
þN � 1

N
FST

� �
ð2Þ

per nd generations. For Wright’s island model,

FST ¼ ð1�mÞ2=ðð1�mÞ2 þNð1� ð1�mÞ2ÞÞ;

and the whole expression can be written as (1�FST)/N.
Hence, the effective size is (1�FST)/(Nnd) as already
given by Wright (1943).
This derivation of effective size is in line with other

computations of effective size in ‘structured coalescents
with two time scales’ (eg Nordborg, 2001; Wakeley and
Aliacar, 2001; Nordborg and Krone, 2002). Here the
separation of time scales is obtained for a large number
of demes, and the expression for effective size is correct
to leading order in 1/nd. Wakeley and Aliacar (2001)
have already used such an approach (together with
additional approximations) to obtain an expression for
the effective size of a metapopulation. Their result is
consistent with the more general one presented below.
Using a time scale of nd generations to derive the

effective size is in line with such previous arguments.
Alternatively, we can compute the probability that twoReceived 14 October 2002; accepted 12 February 2003

Correspondence: F Rousset, Laboratoire Génétique et Environnement,
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lineages coalesce in a given ‘current’ generation as the
sum over t of probabilities that (1) the two ancestral
lineages gathered in the same deme t generations earlier
(probability (1�(1�m)2)/nd), and (2) given t, they
coalesce in the current generation rather than separate
again in different demes. 1/N+(N�1)FST/N then appears
as the sum over t of probabilities of the second event.

Local extinctions
With local extinctions, the two demes where the genes
are sampled may have both become extinct in the
previous generation (probability e2), or neither became
extinct (probability (1�e)2), or only one did (probability
2e(1�e)). If neither became extinct, the probability that
the two lineages come from a single deme in the previous
generation is

1� ð1�mÞ2

ð1� eÞnd
þOð1=nd2Þ ð3Þ

where (1�e)nd is the number of parental demes that
contribute to the next generation. If one or both demes
became extinct, the probability is simply 1/((1�e)nd).

Taking the different cases into account, the overall rate
of coalescence is

1

Ne
� 1

nd
ð1� eÞð1� ð1�mÞ2Þ þ 2eþ e2

1� e

� �

� 1

N
þN � 1

N
FST

� �
ð4Þ

where B means that the computation is correct to
leading order in 1/nd. This can be written as

1

Ne
� 1

nd

1� ð1�mÞ2ð1� eÞ2

1� e
QR ð5Þ

where QR�1/N+(N�1)FST/N is the ‘identity by descent’
among gametes produced by adults within a deme, that
is the relatedness of such gametes relative to gametes
produced in different demes. QR can be computed, for
example, as in Wade and McCauley (1988), or can be
deduced from the recursions detailed below. One then
obtains that for an infinite number of demes

QR ¼ 1=N þ e=k� e=kN

1� ð1� 1=NÞ½ð1�mÞ2ð1� eÞ þ efð1� 1=kÞ

ð6Þ

where k is the number of recolonizers, and where f¼ 0
for the migrant pool model and f¼ (1�m)2 for the
propagule pool model. Hence,

1

Ne
� 1

nd

ð1� ð1�mÞ2ð1� eÞ2Þð1=N þ e=k� e=ðkNÞÞ
ð1� eÞð1� ð1� 1=NÞ½ð1�mÞ2ð1� eÞ þ efð1� 1=kÞ
Þ

:

ð7Þ
This result is consistent with approximation (23)

derived by Wakeley annd Aliacar (2001) for f¼ 0, large
N, and small m and e. Further, equation (7) is also
obtained by the following argument, which is longer but
allows step-by-step comparison with earlier analyses of
Pannell and Charlesworth (1999).

Matrix formulation

The asymptotic rate of coalescence is obtained as (1�l)�1,
where l is the largest eigenvalue of the matrix which
describes the decrease of gene diversities in the absence
of mutation (eg Hill, 1972; Ewens, 1982; Whitlock and
Barton, 1997). To construct this matrix, we first consider a
system of recursions for probabilities of identity within
and among demes, comparable to those of Slatkin (1977)
and Pannell and Charlesworth (1999). These recursions
include mutation as those of Slatkin, but of course they
describe the decrease of gene diversities when mutation
rate is set to zero.

The life cycle considered in these models is as follows
(Slatkin, 1977). In the absence of extinction, events occur
in the following order: gamete production, dispersal, and
population regulation, where N adult offspring survive.
In each generation any deme can independently become
extinct with some probability e. Extinction occurs before
reproduction, so that the adults do not contribute
anything to the next generation. An extinct deme is
immediately recolonized by k colonizers, which repro-
duce immediately so that there will always be N adults
in the next generations in all demes, recolonized or not.
Thus, recolonizers experience two rounds of dispersal
and reproduction within one ‘generation’, that is within
the time only one round is considered for demes that do
not become extinct. This assumption was thought to
simplify the computation of FST, but can be relaxed (see
Discussion). In the ‘migrant pool’ model, colonizers in
the propagules are independently sampled from all other
demes. In the ‘propagule pool’ model, propagules of k
colonizers are formed in nonextinct demes after gamete
production and dispersal, and each extinct deme is
recolonized by the k members of a single propagule. As
noticed by Pannell and Charlesworth (1999), it is actually
not required that the extinct and colonized habitats are
the same: it is only assumed that a constant number of
demes become extinct and that an equal number of
habitats are colonized in each generation. For concise-
ness, I consider N and k where previous authors
considered 2N and 2k genes. Let Qi be the probability
of identity of genes from different adults, within demes
(Q1) and in different demes (Q2). Here we consider the
probability of allelic identity in the infinite allele model.
Let m be the mutation rate. We write the recursions for
next-generation identities Q1

0 and Q2
0 as

Q
0

1 ¼ð1� mÞ2 ð1� eÞ a Q1 þ
1�Q1

N

� ���

þð1� aÞQ2

�
þ eA

�
ð8Þ

Q0
2 ¼ð1� mÞ2 ð1� eÞ 1� end

nd � 1

� �
b Q1 þ

1�Q1

N

� ���

þ ð1� bÞQ2

�
þ CB1

�
ð9Þ

where

a � ð1�mÞ2 þ m2

ð1� eÞnd � 1
; ð10Þ
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b � 1� a

ð1� eÞnd � 1
; ð11Þ

A � 1

k
þ 1� 1

k

� �
f Q1 þ

1�Q1

k

� ��

þ ð1� fÞQ2

�
; ð12Þ

B1 �
1

ð1� eÞnd
Q1 þ

1�Q1

N

� �

þ 1� 1

ð1� eÞnd

� �
Q2; ð13Þ

C � 2ndeð1� eÞ
nd � 1

þ eðnde� 1Þ
nd � 1

: ð14Þ

Here:

� Equations (8) and (9) are as in Slatkin (1977) and
Pannell and Charlesworth (1999) (except for obvious
typos in the latter). For nd-N, equilibrium FST is the
solution Q1 of the recursion deduced from equation (8)
with Q2¼ 0:

Q0 ¼ ð1� eÞð1�mÞ2QR þ e

� 1

k
þ 1� 1

k

� �
fQR

� �
: ð15Þ

This yields equation (6).
� C is a shorthand for a term already considered by these

authors.
� Equation (10) is modified from Slatkin (1977) as

suggested by Pannell and Charlesworth (1999).
� Equation (10) is modified from Pannell and Charles-

worth’s equation (A3) so as to be consistent with the
exact recursions in Nagylaki (1983) for e¼ 0. Never-
theless, this difference does not affect results for FST
nor for effective size to leading order in 1/nd, because
equation (11) and their equation (A3) are identical to
first order in 1/nd: they differ only by terms of order 1/
nd2. Likewise, the O(1/nd) term in equation (10) does
not affect FST nor effective size to leading order in 1/
nd. Thus, this term, which represents the probability
that two genes immigrating in the same deme come
from a common parental deme, can also be neglected
in later analyses.

� In equation (12), I use the notation f for the probability
that two colonizers have parent(s) in the same deme. If
propagule pools are formed after dispersal of gametes
(consistently with Slatkin’s verbal description of the
life cycle), then f¼ (1�m)2+O(1/nd). If propagule
pools are formed from locally produced gametes, then
f¼ 1. In the migrant pool model, f¼O(1/nd). It may
be checked that theO(1/nd) terms in f have no bearing
on the results, and they will be ignored below.

There are some inconsistencies among different
analyses of the propagule pool model. Slatkin ana-
lyzed two different scenarios: ‘model I’ and ‘model II’
(respectively, an islands-mainland model without
dispersal between the islands, and a finite island
model with migration). As noticed by Wade and
McCauley (1988), FST should be the same in both
models when nd-N. For the propagule pool model,

equation (15) of Wade and McCauley (1988) is
consistent with equation (6) of Slatkin (1977); they
imply f¼ (1�m)2. But Slatkin’s and Pannell and
Charlesworth’s systems of recursions for model II
yield different results; they imply f¼ 1. Of course,
both cases can be considered, provided they are
distinguished.

The probability of common origin of colonizers fwas
first considered by Whitlock and McCauley (1990), but I
was unable to match their equations with the above
ones. In particular, their equation (4) for identity among
gametes implies that there are two successive reproduc-
tions at recolonization if f¼ 1 (as seen from terms of
order 1/(kN) in the recursions, and consistently with
Slatkin’s description of the life cycle), while there is only
one reproduction at recolonization if f¼ 1 (only terms
of order 1/k appear, so gametes are not produced by N
adults at some stage). Thus, their equations may not
correspond to a well-defined life cycle.

� The main discrepancy with earlier expressions is in
equation (13), which has the factor Q1+(1�Q1)/N
instead of Q1 in Slatkin (1977) and Pannell and
Charlesworth (1999). This difference takes into account
that when genes from different demes originate from
parent(s) in a single deme, they may actually have the
same parent and coalesce. This does not affect FST
values, but it does affect Ne values.

From the above equations, one can derive the
probabilities gij that a pair of genes of type i (i¼ 1 for
pairs within a deme and 2 for pairs in different demes)
derives without coalescence from a pair of genes of type
j. They are

g11 ¼ 1� 1

N

� �
ðð1� eÞaþ e 1� 1

k

� �
fÞ; ð16Þ

g12 ¼ ð1� eÞð1� aÞ þ e 1� 1

k

� �
ð1� fÞ; ð17Þ

g21 ¼ 1� 1

N

� �
ð1� eÞ 1� end

nd � 1

� �
b

�

þC
1

ð1� eÞnd

�
; ð18Þ

g22 ¼ð1� eÞ 1� end
nd � 1

� �
ð1� bÞ

þ C 1� 1

ð1� eÞnd

� �
: ð19Þ

Ne is obtained as (1�l)�1, where l is the largest
eigenvalue of G�(gij). To leading order in 1/nd, the
expression for Ne can be deduced from a perturbation
approximation for l near the limit nd-N. Classical
expressions for perturbation approximations (eg Horn
and Johnson, 1985; Charlesworth, 1994; Caswell, 2001)
here take the form

1

Ne
� �dl ¼ �yðdGÞe

y 
 e ð20Þ

where y and e are left and right eigenvectors associated
with the largest eigenvalue (here 1) or the unperturbed
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matrix (here limnd!1G); and dG are the terms of order
1/nd in G2limnd!1G.

By this method, one obtains again equation (7). It
differs from the result implied by the same method but
with Pannell and Charlesworth’s system of recursions, as
expected from the difference in the definition of B1

(equation (13)). Differences between the rate of coales-
cence predicted from the above recursions and from
Pannell and Charlesworth’s ones are only of order
e(e+m), and the maximum differences I have found
numerically were by factors ofE1.5 to 2.2 for k¼N, large
m, and e from 0.25 to 0.7 (details not shown). Approx-
imations comparable to those of their Table 2 for total
diversity pT can be derived from equation (7). It
appears that a factor (1+Ne/k) is missing from the
denominator of their central and right-hand approxima-
tions for pT when epm. This may imply some reductions
in effective size.

Alternative coalescent arguments

Alternative derivations of effective size also allow
comparison with Whitlock and Barton’s methods. First,
the rate of coalescence may be obtained as the probability
x that two different lineages that have not already
coalesced are in gametes from the same deme, times the
probability pc that two gametes from one deme coalesce
within one generation. Here, distinguishing whether the
deme has just been recolonized or not,

pc ¼ ð1� eÞ 1
N

þ e
1

N
þN � 1

N

1

k

� �

¼ 1

N
þ e

N � 1

N

1

k
ð21Þ

and x is the equilibrium solution of the recursion

x � x0ð1� 1=NÞ½ð1�mÞ2ð1� eÞ þ efð1� 1=kÞ


þ 1

nd

1� ð1�mÞ2ð1� eÞ2

1� e
: ð22Þ

Here x0 is the probability x considered one generation
later, and the factor of x0 is the probability that two
gametes produced in the same deme originate from two
different gametes produced in a single deme one
generation before (compare with the denominator of QR

in equation (6). The remainder is the probability that
genes in different demes come from gametes in the same
deme (see equations (4) and (5)). It is straightforward to
check that xpc is 1/Ne as given by equation (7).

A variant of this argument is to compute x as
(1�FST)r where r is the equilibrium solution of the
recursion

r � r0ðð1� eÞð1�mÞ2 þ efÞ þ 1

nd

� 1� ð1�mÞ2ð1� eÞ2

1� e
ð23Þ

obtained from equation (2) by ignoring the coalescence
terms 1/N and 1/k. The rationale for the computation of
r is given in the Appendix. This approach again yields
equation (7), but now 1/Ne is expressed in the form
(1�FST)rpc, which allows a comparison with an argu-
ment on p. 434 of Whitlock and Barton (1997). They

derive 1/Ne from their equation (13), in the form

X1
x¼0

eð1� eÞxW2x

 !
ð1� FSTÞ=N:

However, if effective size was of this form, then their Wx
should depend on k (as rpc does). This is not the case.
The resulting formula tends to overestimate effective
size, possibly by a factor of 100 or more for f¼ 1 and
ebm (details not shown). It also conflicts with the
approximation 1/NeE2(m+e)FST/nd given by Whitlock
and Barton (1997) and further considered by Pannell
and Charlesworth (1999). Much the same can be said
of their equation (22), which is correct only when
k-N (for f¼ 0). A possible explanation for these
discrepancies is that results are derived from their
equation (3), which does not hold in Slatkin’s models
(see the Appendix).

The approximation 1/NeE2(m+e)FST/nd is valid, but
in need of a general argument. This approximation can
be deduced simply by expressing QR as a function of
FST�Q using equation (15), plugging the result in
equation (5), and simplifying for small m and e.

Discussion

It should be a relief to everyone that effective size can be
obtained by the simple coalescent argument leading to
equation (4). Such arguments efficiently yield expres-
sions for effective size in more complex metapopulations
with variable deme size (Rousset, in press). However, the
coalescent argument has been obscured by earlier
analyses (except Wakeley And Aliacar, 2001), which
conflict with the present results. Previous recursions for
probabilities of identity in Slatkin (1977), Whitlock and
McCauley (1990) and Pannell and Charlesworth (1999)
are inconsistent with Slatkin’s life cycle and do not
correspond to another well-defined life cycle. These
discrepancies affect expressions for FST in Whitlock and
McCauley (1990) and Whitlock and Barton (1997) and for
effective size in Whitlock and Barton (1997) and Pannell
and Charlesworth (1999). Quantitatively, effective size
differs slightly from the expression resulting from
Pannell and Charlesworth’s system of recursions, and
may differ substantially from equation (22) of Whitlock
and Barton (1997) (for f¼ 0) or from results based on
their equation (13).

Expectedly, the present results support the intuitive
conclusion that extinctions reduce the effective size,
which previous works had reached. The simple coales-
cent argument easily yields equation (5), which shows
that propagule size k and probability of common origin f
affect effective size only through their effects on QR, that
is on FST. Also as expected, lower k and higher f reduce
the effective size.

The assumption that two successive reproduction
events occur right after extinction when only one occurs
in nonextinct demes may seem unnatural and is easily
relaxed (eg Whitlock et al, 1993), but results will then
depend on additional assumptions about the life cycle,
that is whether demes of k colonizers produce as much
juveniles as demes of N individuals. If so, equation (5) is
still valid, giving Ne in terms of the identity QR among
gametes produced within a deme. QR obeys a recursion
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of the form

QR ¼ð1� eÞ 1

N
þN � 1

N
ð1�mÞ2QR

� �

þ e
1

k
þ 1� 1

k

� �
fQR

� �
ð24Þ

which yields

QR ¼ ð1� eÞ1=N þ e=k

1� ð1� eÞð1�mÞ2ð1� 1=NÞ � efð1� 1=kÞ
:

ð25Þ
A concrete illustration of the different formulas is

obtained by applying equation (5) to two sets of
estimates of demographic parameters from the literature.
Whitlock (1992) estimated 2N¼ 21.7 (genes copies),
m¼ 0.31, f¼ 0.5, e¼ 0.1, 2k¼ 10.6 (gene copies) in the
beetle Bolithoterus cornutus. The ratio Ne/(Nnd) is 0.67 or
0.72 whether an intercalary generation is assumed at
recolonization or not. Ingvarsson et al (1997) estimated
2N¼ 22.2 (genes copies), m¼ 0.366, f¼ 0.5, e¼ 0.255,
2k¼ 8 (gene copies) in the beetle Phalacrus substriatus.
The ratio Ne/Nnd is likewise 0.35 or 0.40. Thus, the
overall effect of population structure seems to be a
moderate reduction of effective size, whatever formula is
used. Substantially larger reductions in effective size
may occur for lower numbers k of colonizers relative to
N. How often this occurs is an empirical question.
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Appendix

Migration matrix approach and rationale for r: We can
write the recursions (8) and (9) in the form

Q0 ¼ ð1� mÞ2AQþ ð1� mÞ2 ~AA 1�Q1

0

� �
ðA:1Þ

where Q is the column vector (Q1,Q2). Here 1�Q1 is the
gain in identity when a coalescence event occurs, hence
the elements i1 of ~AA must be the probabilities of
coalescence of a pair i of genes in the previous
generation; and A are the remaining factors of the Q0s
in recursions (8) and (9), which describe the transitions of
a pair of lineages between the states ‘within the same
deme’ and ‘in different demes’. However, coalescence
events are ignored in the definition of A. A recursion of
the form of equation (A.1) reduces to equation (3) of
Whitlock and Barton (1997) if ~AA ¼ A and if A can be
written as the direct product with itself of the migration
matrix for single genes, but neither condition holds here.

The elements of the left 1 eigenvector e of A give the
probabilities that ancestral pairs of genes are within the
same deme or in different demes, given the A matrix of
transition probabilities, where coalescence events are
ignored. The rationale for the computation of r from
equation (23) is to give e in the form eB(r,1�r).

Premultiplying equation (26) e yields, for m¼ 0,

e 
Q0 ¼ e 
Qþ ðe 
 ~AAÞ1ð1�Q1Þ ðA:2Þ

hence the second term on the right is the absolute
reduction in gene diversity in one generation. Thus the
relative reduction in diversity per generation is

1� 1

Ne
¼ 1� e 
Q0

1� e 
Q ¼ 1� ðe 
 ~AAÞ1
1�Q1

1� e 
Q
� 1� ðe 
 ~AAÞ1ð1� FSTÞ: ðA:3Þ

As ðe 
 ~AAÞ1 � rpc, we recover the derivation of 1/Ne as
rpc(1�FST).
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