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Summary Increased expression of manganese superoxide dismutase (Mn-SOD), one of the mitochondrial enzymes involved in the redox
system, has been shown to diminish the cytotoxic effects of several anti-cancer modalities, including tumour necrosis factor-α, ionizing
radiation, certain chemotherapeutic agents and hyperthermia. We asked if Mn-SOD is a potential target to augment the sensitivity of cancer
cells to various anti-cancer treatments and for this we established stable Mn-SOD antisense RNA expressing cell clones from two human
colon cancer cell lines, HCT116 (p53 wild-type) and DLD1 (p53 mutant-type). Suppression of Mn-SOD in HCT116 was accompanied by an
increased sensitivity to radiation, hyperthermia and doxorubicin, as compared with findings in controls. The mitochondrial permeability
transition, as measured by a decrease of the mitochondrial transmembrane potential was more intensely induced by radiation in HCT116
antisense clones than in the control, an event followed by a greater extent of DNA fragmentation. Apoptosis was also induced by
hyperthermia more intensely in HCT116 antisense clones than in the control. On the other hand, DLD1 antisense clones did not exhibit any
enhancement of sensitivity to any of these treatments. These data support the possibility that inhibition of Mn-SOD activity renders colon
cancer cells with wild-type p53 susceptible to apoptosis induced by radiation, hyperthermia and selected anti-cancer drugs. Therefore, we
suggest that Mn-SOD could be a target molecule to overcome the resistance to anti-cancer treatments in some colon cancer cells carrying
wild-type p53. © 2000 Cancer Research Campaign
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Superoxide dismutase (SOD) is an antioxidant enzyme involved in
the defence systems against reactive oxygen species (ROS). There
are three known SODs, including mitochondrial manganese SOD
(Mn-SOD), intracellular copper, zinc SOD (Cu,Zn-SOD), which
localizes at the cytoplasm and nucleus, and extracellular Cu,Zn-
SOD. These SODs catalyse dismutation of two superoxide anions
(O2

·–) into hydrogen peroxide, which is then catalysed to
innocuous O2 and H2O by glutathione peroxidase and catalase.
Excessive ROSs provoke untoward events such as DNA damage,
peroxidation of the lipid membrane and protein (Janssen et al,
1993). In addition, ROS are also thought to act as a potent
mediator of apoptosis (Oberley and Buettner, 1979; Buttke and
Sandstrom, 1994). Indeed, ionizing radiation, hyperthermia, some
chemotherapeutic agents and cytokines elicit anti-tumour effects
by generating a large amount of noxious radicals in the affected
cells (Sinha and Mimnaugh, 1990; Yoshikawa et al, 1993;
Wallace, 1999). The overexpression of Mn-SOD which dismu-
tases O2

·– radicals in the mitochondria makes the cancer cells
more resistant to treatments in cases of malignant melanoma,
breast and cervical cell carcinomas (Wong et al, 1989; Hirose et al,
1993; Li and Oberley, 1997).
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The expression level of Mn-SOD is always altered in cancers
(Oberley and Oberley, 1997) and it was reported that forced
expression of Mn-SOD in various tumour cell lines converts
malignant phenotypes to less malignant or benign ones (Church
et al, 1993; Li et al, 1995; Zhong et al, 1996). These data support
the concept that Mn-SOD may be a new type of tumour
suppressor gene. On the other hand, increasing evidence chal-
lenging this concept has been reported; high levels of Mn-SOD
expression were observed in malignant tumours such as central
nervous system tumour, colorectal cancer and mesothelioma
(Cobbs et al, 1996; Kinnula et al, 1996; Landriscina et al, 1996;
Janssen et al, 1998). Some of these reports also revealed that the
higher Mn-SOD expression correlates with a more advanced
stage of the cancer or shortened survival time. We earlier exam-
ined the correlation between Mn-SOD mRNA expression levels
and clinicopathological parameters in gastric and colorectal
cancers and found that Mn-SOD mRNA was more highly
expressed in the tumour as compared with the corresponding
normal mucosa, and the expression level of Mn-SOD mRNA
significantly correlated with the aggressiveness of the cancers
(Toh et al, 2000).

Given that highly expressed Mn-SOD in colon cancers confers
resistance to anti-cancer therapies, inhibition of endogenous Mn-
SOD expression level or activity may be one strategy to overcome
the resistance of these cancers. Thus, we attempted to clarify the
significance of Mn-SOD in sensitivity of colon cancer cells to
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radiation, hyperthermia and chemotherapeutic agents and we
investigated the potential of Mn-SOD to be a target for enhancing
the effectiveness of anti-cancer therapies.



Cell line

HCT116 and DLD1 colon adenocarcinoma cells were maintained
in McCoy’s 5A and RPMI 1640 medium supplemented with 10%
heat-inactivated fetal bovine serum, respectively, in humidified
95% air and 5% CO2.

Construction of the Mn-SOD antisense RNA expression
plasmid

A 216 bp Mn-SOD cDNA fragment, which encompasses the 5′
part of the cDNA including translation initiation codon, was
synthesized by reverse transcription-polymerase chain reaction
amplification (RT-PCR), using primers (5′-primer, 5′-catcagcg-
gtaagccagcac-3′; 3′-primer, 5′-gttcaggttgttcacgtagg-3′) with the
total RNA extracted from HCT116 colon cancer cell as a template
and inserted into a eukaryotic expression vector pCR3.1 uni
(Invitrogen, Carlsbad, CA, USA) in the reverse direction. The
sequence of Mn-SOD fragment was confirmed by automated DNA
sequencer (Applied Biosystems, Foster City, CA, USA).

Establishment of stable clones expressing Mn-SOD
antisense RNA

Transfection of the resultant expression plasmid or the vector only
to HCT116 and DLD1 was performed using LipofectAMINE (Life
Technologies Inc., Grand Island, NY, USA) according to the
manufacturer’s instruction. All transfectants were selected under
the concentration of 400 µg ml–1 neomycin (Life Technologies
Inc.) for approximately 2 weeks and thereafter cloned by limiting
dilution. The resultant stable transfectants were maintained under
selection pressure (400 µg ml–1 neomycin) during all experiments
described below. Control transfectants carrying only the self-
ligated pCR3.1 uni were cloned using the same procedure.

Northern blotting

Total RNA was extracted from parental cell and transfectants
using ISOGEN (Nippon Gene, Tokyo, Japan), a monophase solu-
tion with phenol and isothianate. The RNA was suspended in
RNase-free water, and separated by electrophoresis through 18%
formaldehyde, 1.5% agarose gel. The fractionated RNA was trans-
ferred onto a nylon membrane, and cross-linked with UV linker.
The filter was hybridized with the 32P-labelled Mn-SOD cDNA
probe or glyceraldehyde-3-phosphate dehydrogenase cDNA
probe. After washing, autoradiogram was imaged and analysed
with BAS system (Fuji Film Co Ltd, Tokyo, Japan).

Mn-SOD activity assay and native gel assay

The Mn-SOD activity assay was performed according to Oberley
and Spitz (1985). In brief, Mn-SOD activity of the sonicated
homogenates of the cultured cells was assayed by competitive
inhibition of O2

·– generated by the xanthine–xanthine oxidase
© 2000 Cancer Research Campaign
system to reduce nitroblue tetrazolium (NBT; Sigma, St. Louis,
MO, USA) in the presence of sodium cyanide. The reduction
rate of NBT was monitored spectrophotometrically at 560 nm.
Differences in Mn-SOD activity between antisense and control
clones were obtained by comparing the inhibitory effect of each
sample on reducing NBT in the same amounts of protein. In some
experiments, both Mn-SOD activity and Cu,Zn-SOD activity were
also monitored using the native gel assay, as described
(Beauchamp and Fridovich, 1971).

Clonogenic fraction after radiation or hyperthermia

At 24 h after seeding on a 25 cm2 tissue culture flask (4 or 3 × 105

cells/flask), the exponentially growing cells were exposed to radi-
ation or hyperthermia. The cells were exposed to various doses
of radiation with 60Co source at approximately 1 Gy min–1. For
hyperthermia, the cells were heated by immersing the flasks in a
circulating water bath at 42°C for the indicated time. After these
treatments, the cells were trypsinized, diluted at different densities
and plated in 60 mm tissue culture dishes, in triplicate. After
culture for 10 days, the resultant colonies were fixed, stained with
crystal violet and colonies of over 50 cells were counted.
Clonogenic fraction was calculated as: survival fraction = number
of colonies/number of plated cells × PE (plating efficiency),
where PE is colony-forming efficiency without any treatment. All
experiments were repeated three times, independently.

MTT assay for chemosensitivity

Cytotoxic agents used in this study were doxorubicin, mitomycin
C, 5-fluorouracil (Kyowa Hakko Kogyo Co Ltd, Tokyo, Japan)
and paclitaxel (Bristol-Myers Squibb KK, Tokyo, Japan). HCT116
(2.5 × 103 per well) and DLD1 cells (5 × 103 per well) were
incubated with various concentrations of each chemotherapeutic
agent in 96-well plates. After 72 h of incubation, both 20 µl of
0.4% 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (MTT; Sigma) and 20 µl of succinic acid were added to
each well. After a further 3 h of incubation, spectrometric
absorbance at 540 nm was measured using a microplate-reader
(Tosoh Co Ltd, Tokyo, Japan) with the absorbance set at 620 nm as
a background. The growth inhibition rates of the cells were calcu-
lated as follows: percentage of growth inhibition = (B – A)/
B × 100 (%), in which A and B are the mean absorbance value of
cells cultured with and without a drug, respectively.
Chemosensitivity of the Mn-SOD antisense clones was indicated
as a relative ratio of growth inhibition compared to that of the
vector control clone treated using the same conditions.

Cytofluorometric analysis of mitochondrial
transmembrane potential and DNA content

Mitochondrial transmembrane potential (∆Ψm) was measured by
RHODAMINE 123 (Rh 123; Molecular Probes Inc, Eugene, OR,
USA) staining (Shimizu et al, 1996). In brief, the culture cells were
trypsinized at 24 h after radiation and resuspended in the complete
medium containing Rh 123 (10 µM) at 37°C for 15 min. After
washing twice with phosphate-buffered saline (PBS), the cells
were further resuspended in PBS with 10 µM propidium iodide
(PI; Molecular Probes Inc) for 10 min and analysed using flow
cytometry (Coulter Corp, Hialeah, FL, USA). PI positive cells
British Journal of Cancer (2000) 83(7), 928–934
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were excluded for determination of ∆Ψm of viable cells. Control
experiments were done in the presence of 60 µM carbonyl cyanide
m-chlorophenylhydrazone (CCCP; Sigma) for 30 min.

To measure the percentage of apoptotic nuclei after radiation,
DNA contents were analysed based on PI staining. Cells collected
at the indicated time after radiation were fixed with 70% ethanol
for 1–2 days and rehydrated in buffer consisting of 50 mM
Na2HPO4 (9 parts), 25 mM citric acid (1 part), and 0.1% Triton-
X100 (Hotz et al, 1994). An aliquot of the cells was then stained
with 2 µg ml–1 PI, containing 50 U ml–1 RNase A, for 30 min
before measuring the fluorescence.

DNA fragmentation assay

To determine oligonucleosomal DNA fragmentation, nuclear
DNA (20 µg) obtained from the cells lysed by proteinase K and
RNase A was subjected to 2% agarose gel electrophoresis,
followed by ethidium bromide staining (Zamzami et al, 1995).

Statistical analysis

Two-tailed Student’s t-test was used for statistical analysis.
P < 0.05 was considered to have statistical significance.



Establishment of stable transfectants of HCT116 and
DLD1 colon cancer cell lines expressing Mn-SOD
antisense RNA

Transfection to HCT116 and DLD1 colon cancer cells with the
Mn-SOD antisense RNA expression plasmid or the control empty
plasmid was done and neomycin-resistant cells were cloned by
dilution cloning. The Mn-SOD protein levels in the selected clones
were assayed by immunoblotting analysis, using anti-Mn-SOD
polyclonal antibodies (kindly provided from Professor Naoyuki
Taniguchi, Osaka University School of Medicine). Finally two
stable clones with decreased Mn-SOD protein levels were estab-
lished from HCT116 and DLD1 and were designated H-A16 and
H-A22, and D-A10 and D-A22, respectively. The Mn-SOD
activity of these stable antisense clones was reduced to 27–59%,
compared to the respective vector control clones (Table 1).
Northern blot analysis shows decreased expression levels of 4 kb
Mn-SOD mRNA in antisense-transfected cell lines and no consid-
erable changes in Mn-SOD mRNA expression levels between
parental and vector-transfected cell lines, indicating the changes of
Mn-SOD activities observed in the antisense clones are not due to
British Journal of Cancer (2000) 83(7), 928–934

Table 1 Relative Mn-SOD activity of stable Mn-SOD antisense clones

Clonesa Relative Mn-SOD activity (±SD)b

compared with the vector control

H-A16 0.59 ± 0.09
H-A22 0.33 ± 0.02
D-A10 0.57 ± 0.24
D-A22 0.27 ± 0.09

aTwo stable antisense clones from HCT116 and DLD1 were designated H-
A16, H-A22 and D-A10, D-A22, respectively; bMn-SOD activity was evaluated
using the nitroblue tetrazolium (NBT) method (Oberley and Spitz, 1985), in
three independent experiments
drug selection (Figure 1). There was no significant difference of the
Mn-SOD activity between the parental cells and vector controls of
both cell lines. No significant difference of Cu,Zn-SOD activity
between the vector controls and the Mn-SOD antisense clones was
detected by SOD native gel assay (data not shown).

Effects of suppression of Mn-SOD on sensitivity to
radiation, hyperthermia and anticancer drugs

The sensitivity to various anti-cancer treatments was compared
between the Mn-SOD antisense and the vector control clones
established from HCT116 and DLD1 colon cancer cell lines.
Figure 2A shows the clonogenic survival of those clones after
exposure to 3 Gy irradiation. Both of two HCT116 antisense
clones (H-As) showed significantly increased sensitivity to radia-
tion (P < 0.05 in H-A16 and P < 0.01 in H-A22). The degree of the
increase of sensitivity in H-As was comparable to that of suppres-
sion of those for Mn-SOD activity (Table 1). Neither DLD1 anti-
sense clone (D-As) D-A10 nor D-A22 showed any significant
changes in sensitivity. Increased sensitivity to radiation of H-A16
and H-A22 was radiation dose-dependent (Figure 2B).

Next, the sensitivity to hyperthermia in the H-As and D-As was
evaluated. Both of the H-As showed significantly enhanced
susceptibility to hyperthermia at 42°C as compared to the vector
control, in a dose-dependent manner (Figure 3A), while no
changes were observed in the survival rate in the D-As (data not
shown). The extent of the decrease of clonogenic survival in
hyperthermia also depended on the Mn-SOD activity. Sensitivity
of the Mn-SOD antisense clones to some chemotherapeutic agents
was also measured by MTT assay. Doxorubicin, whose cyototoxi-
city is considered to be partly due to O

2
·– generated, showed more

cytotoxicity in the H-As than the HCT116 vector control clone but
not in the D-As (Figure 3B). Augmentation of cytotoxicity of
doxorubicin was achieved more significantly in low-dose adminis-
tration. None of the Mn-SOD antisense clones demonstrated any
enhancement in sensitivity to any other cytotoxic agents, including
5-fluorouracil, mitomycin C and paclitaxel (data not shown).
© 2000 Cancer Research Campaign

HCT116 DLD1

GAPDH

18S

Figure 1 Northern blot analysis is performed with 32P-labelled random
primed probe using PCR-amplified Mn-SOD cDNA and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) cDNA as templates. Relative intensity
of each 4 kb Mn-SOD mRNA in antisense clones to parental cells, which is
normalized by that of each GAPDH mRNA intensity, is indicated
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Figure 2 (A) Mn-SOD antisense clones of HCT116 and DLD1 were exposed to 3 Gy irradiation and surviving fractions were examined by colony formation
assay. HCT116 antisense clones exhibited higher sensitivity than did the vector control, whereas no significant difference of survival fraction was seen in DLD1
antisense clones. (B) Survival fractions of HCT116 and its stable transfectants and the indicated dose of irradiation are shown and the bars are the SEM.
Susceptibility of HCT116 antisense clones to radiation was dose-dependent. All data indicate a mean survival fraction and the bars represent the SEM in three
independent experiments
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Figure 3 Sensitivities of Mn-SOD antisense transfectants of HCT116 to hyperthermia (A) and doxorubicin (B) were evaluated by colony formation assay and
MTT assay, respectively. The mean survival fraction of the indicated duration of hyperthermia was examined in three independent experiments. Cell viability
after treatment of the indicated amounts of doxorubicin was expressed as a relative value to the untreated control. The bars indicate the SEM
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Suppression of Mn-SOD enhances apoptosis induced
by radiation in HCT116 antisense clones

To examine the mechanism of enhanced radiosensitivity in the
H-As, we analysed the extent of mitochondrial permeability
transition (PT) induced by radiation in H-As. After 24 h of 3 Gy
irradiation, the magnitudes of ∆Ψm reduction in H-A16 and
H-A22 were greater than that in the vector control and they
exceeded the extent of ∆Ψm decrease after exposure of the
vector control to an uncoupler CCCP (60 µM, 30 min) (Figure
4A, B). Since diminution of ∆Ψm is thought to be an early step
of programmed lymphocyte death (Zamzami et al, 1995), induc-
tion of apoptosis in those clones was then examined by DNA
© 2000 Cancer Research Campaign
fragmentation. Flow cytometric analysis revealed that the sub-
G1 fraction, which is the DNA subdiploidy population in the H-
As, increased as compared to the parental cell and the vector
control after 10 days of irradiation (Figure 5A), suggesting that
apoptosis was indeed induced. The percentage of subdiploidy in
the H-As was more than twice of the vector control under irradi-
ation (Figure 5B) and this was the case with hyperthermia
(Figure 5C). The significant increase of nuclear subdiploidy
population after irradiation was detected later than 3 days after
irradiation, which shows that the mitochondrial PT preceded to
apoptosis (data not shown). DNA fragmentation induced by irra-
diation was further confirmed by existence of the DNA ladder in
the H-As (Figure 5D).
British Journal of Cancer (2000) 83(7), 928–934
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Figure 4 ∆Ψm was examined by Rh 123-based staining. After excluding PI-positive cells, ∆Ψm of the viable cells was counted using a flow cytometer. Three
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Resistance to various anticancer therapies such as chemotherapy,
radiotherapy and hyperthermia still remains one of the major prob-
lems in the treatment of subjects with colon cancers. Therefore,
efforts to clarify mechanisms involved in the resistance and to
develop effective strategies to overcome the resistance are needed.
Apoptosis is induced as the cellular response to the diverse anti-
cancer therapies, and cancer cells which have acquired the
resistance to apoptosis seem to have a growth advantage (Fisher,
1994; Graeber et al, 1996). Lowering the apoptotic threshold in the
resistant cancer cells may be a promising strategy to enhance the
effects of anti-cancer treatments.

Radiation, some chemo-immunotherapies and hyperthermia
exert anti-tumour effects by generating excessive amounts of
noxious ROS over the capacity of the endogenous antioxidant
system (Sinha and Mimnaugh, 1990; Yoshikawa et al, 1993;
Wallace, 1999). The forced expression of antioxidant Mn-SOD,
which scavenges the apoptosis-inducible ROS in the mitochon-
dria, makes cancer cells resistant to various anticancer treatments
(Wong et al, 1989; Hirose et al, 1993; Li and Oberley, 1997).
Mitochondria have recently been shown to play an important role
in apoptosis (Susin et al, 1998; Green and Reed, 1998) and ROS,
most of which are generated in the mitochondria, are involved in
mitochondria-related apoptosis (Buttke and Sandstrom, 1994;
Wallace, 1999). Thus, acceleration of ROS production in the mito-
chondria by suppression of Mn-SOD might lead to induction of
apoptosis and aid in overcoming the resistance to anti-cancer ther-
apies. We found that suppression of Mn-SOD, which would result
in increase of the total amount of O2

·– in the mitochondria,
augmented apoptosis in colon cancer cells exposed to some treat-
ment modalities which are thought to induce O2

·– (Sinha and
Mimnaugh, 1990; Yoshikawa et al, 1993; Wallace, 1999).

ROS can induce apoptosis by evoking mitochondrial PT (Susin
et al, 1998) or by direct activation of caspase 3-like proteases
(Higuchi et al, 1998). Furthermore, activated caspases are also
shown to target the mitochondrial PT pore to open it (Marzo et al,
1998). Initiation of PT causes a reduction in ∆Ψm, which is an
irreversible step of programmed cell death (Zamzami et al, 1995),
the result being release of apoptosis-inducing factor (AIF),
cytochrome c and caspase zymogens to the cytosol from the mito-
chondrial inner-membrane space, after which AIF and down-
stream executors are activated to lead to apoptosis (Marzo et al,
1998; Susin et al, 1998; Green and Reed, 1998; Susin et al, 1999a;
1999b). Recently, Fujimura et al reported that Mn-SOD inhibits
release of cytochrome c to the cytosol and reduces apoptosis after
permanent focal cerebral ischaemia (Fujimura et al, 1999). In the
Mn-SOD antisense clones of HCT116 colon cancer cells, the
increased O2

·– or its metabolites caused by suppression of Mn-
SOD, may induce the mitochondrial PT pore, then cytochrome c
and AIF released by PT induction may execute the signals to apop-
tosis. Indeed, PT induction preceded the DNA fragmentation in
those antisense clones (data not shown). Furthermore, O2

·– can also
cause oxidative DNA damage by leaching iron from storage
proteins and enzymatic (4Fe-4S) clusters (Keyer and Imlay, 1996;
Fridovich, 1997); released iron catalyses the formation of the most
reactive hydroxyl-radicals and damaged DNA could activate apop-
tosis-inducing signalling molecules such as p53.

The tumour suppressor gene p53 is known to make cancer cells
susceptible to diverse anti-cancer treatments (Lowe at al, 1993;
Muschel et al, 1998). p53 is activated in response to DNA damage
© 2000 Cancer Research Campaign
and stimulates the transcription of proapoptotic genes such as Bax
to execute apoptosis in affected cells (Kastan et al, 1991; Tishler
et al, 1993; Miyashita and Reed, 1995). Furthermore, it has been
shown that p53 itself induces apoptosis by generating ROS and
subsequently causing oxidative mitochondrial impairment
(Johnson et al, 1996; Polyak et al, 1997). We observed changes in
sensitivity to various treatments in p53 wild-type colon cancer cell
with reduced Mn-SOD activity but not in p53 mutated-type,
suggesting the possibility that suppression of Mn-SOD in cancer
cells under normal p53 functions may augment the p53-dependent
apoptosis. In this study, however, we evaluated only two colon
cancer cell lines, which have different backgrounds including
DNA repair function and response to chemotherapeutic agents.
Therefore, for our results to be more conclusive, further experi-
ments would be required, i.e. either analyses of more colorectal
cancer cells or co-transfection of wild-type p53 to the Mn-SOD
antisense p53-mutant DLD1 cells and subsequent assessment of
therapy resistance.

It was reported that Mn-SOD expression is reduced in cancer
cells (Oberley and Oberley, 1997). However, recent studies have
shown that some cancers such as central nervous system tumours,
colorectal cancer and mesothelioma highly express Mn-SOD
(Cobbs et al, 1996; Kinnula et al, 1996; Landriscina et al, 1996;
Janssen et al, 1998). We also noted the higher expression of Mn-
SOD mRNA in gastric and colorectal cancers than that in the
paired mucosa. As Mn-SOD can be a resistant factor to radiation,
hyperthermia and some anti-cancer drugs (Kinnula et al, 1996;
Landriscina et al, 1996; Janssen et al, 1998), the high expression of
Mn-SOD in the colon cancers may possibly contribute to resis-
tance to those treatments. Our results indicate that suppression of
Mn-SOD renders some colon cancer cells susceptible to those anti-
cancer treatment modalities by inducing apoptosis. Thus, Mn-
SOD could possibly be a target for enhancing effects of radiation,
hyperthermia and doxorubicin in the p53 wild-type colon cancer.
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