Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

Genetic mechanisms of behavior—don't forget about the transcription factors

Abstract

Major changes in psychiatric phenotypes due to genetic factors are seldom the result of single gene polymorphisms, but more often the result of several genetic mechanisms. In this millennium article we discuss the notion that the expression of numerous candidate genes could be regulated by the same transcription factors, and that polymorphisms in transcription factor genes might explain some phenotypes. We describe recent results of studies on the biological marker thrombocyte monoamine oxidase (trbc MAO) and the transcription factor AP-2β. Low levels of trbc MAO is associated with temperamental characteristics such as sensation seeking and impulsiveness, and the enzyme is genetically regulated by specific transcriptional mechanisms. Transcription factor AP-2β is important for the development of midbrain structures and AP-2β has several binding sites in the regulatory regions of genes encoding key proteins in the monoamine transmitter systems. We have recently shown AP-2β to be linked to personality, binge-eating disorder, treatment with antidepressant drugs, and also to trbc MAO. Regardless of whether transcriptions factors, such as AP-2β, regulate the expression of eg, the number of monoamine neurons or a variety of candidate genes within the monoamine systems, or both, we would like to emphasize the role of transcription factors, besides polymorphisms in monoaminergic candidate genes, when explaining inter-individual differences in temperament and psychiatric vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Comings DE . Polygenic inheritance and micro/minisatellites Mol Psychiatry 1998 3: 21–31

    Article  CAS  PubMed  Google Scholar 

  2. Baron M . The search for complex disease genes: fault by linkage or fault by association Mol Psychiatry 2001 6: 143–149

    Article  CAS  PubMed  Google Scholar 

  3. Chen K, Wu HF, Shih JC . The deduced amino acid sequences of human platelet and frontal cortex monoamine oxidase B are identical J Neurochem 1993 61: 187–190

    Article  CAS  PubMed  Google Scholar 

  4. Murphy DL, Wright C, Buchsbaum M, Nichols A, Costa JL, Wyatt RJ . Platelet and plasma amine oxidase activity in 680 normals: sex and age differences and stability over time Biochem Med 1976 16: 254–265

    Article  CAS  Google Scholar 

  5. Bridge TP, Soldo BJ, Phelps BH, Wise CD, Francak MJ, Wyatt RJ . Platelet monoamine oxidase activity: demographic characteristics contribute to enzyme activity variability J Gerontol 1985 40: 23–28

    Article  CAS  PubMed  Google Scholar 

  6. Bagdy G, Rihmer Z . Measurement of platelet monoamine oxidase activity in healthy human volunteers Acta Physiol Hung 1986 68: 19–24

    CAS  PubMed  Google Scholar 

  7. Pedersen NL, Oreland L, Reynolds C, McClearn GE . Importance of genetic effects for monoamine oxidase activity in thrombocytes in twins reared apart and twins reared together Psychiatry Res 1993 46: 239–251

    Article  CAS  PubMed  Google Scholar 

  8. Oreland L, Hallman J . The correlation between platelet MAO activity and personality_a short review of findings and a discussion on possible mechanisms, In: Yu PU, Tipton KF, Boulton AA (eds). Progress in Brain Research Vol 106: Elsevier: Amsterdam 1995 pp 77–84

  9. Schalling D, Åsberg M, Edman G, Oreland L . Markers for vulnerability to psychopathology: temperament traits associated with platelet MAO activity Acta Psychiatr Scand 1987 76: 172–182

    Article  CAS  PubMed  Google Scholar 

  10. Redmond DE, Murphy DL, Baulu J . Platelet monoamine oxidase activity correlates with social affiliative and agonistic behaivors in normal rhesus monkeys Psychosom Med 1979 41: 87–100

    Article  CAS  PubMed  Google Scholar 

  11. Usberg M, Oreland L, Garpenstrand H, Damberg M, Ekblom J, Forslund K et al. Thrombocyte-MAO and transcription factor AP-2 are related to personality—is there a connection? 38th ACNP, Acapulco, Mexico, Dec 1999

  12. Sostek AJ, Sostek AM, Murphy DL, Martin EB, Born WS . Cord blood amine oxidase activities relate to arousal and motor functioning in human newborns Life Sci 1981 28: 2561–2568

    Article  CAS  PubMed  Google Scholar 

  13. af Klinteberg B, Oreland L, Hallman J, Wirsen A, Levander SE, Schalling D . Exploring the connections between platelet monoamine oxidase activity and behavior: relationships with performance in neuropsychological tasks Neuropsychobiology 1990–91 23: 188–196

    Article  CAS  PubMed  Google Scholar 

  14. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD et al. Increased stress response and beta-phenylethylamine in MAOB-deficient mice Nat Genet 1997 17: 206–210

    Article  CAS  PubMed  Google Scholar 

  15. Oreland L . Monoamine oxidase in neuropsychiatric disorders. In: Yusahara H, Parvez SH, Ogushi K, Sandler M, Nagatsu T (eds) Monoamine Oxidase—Basic and Clinical Aspects VSP: Utrecht 1993 219–247

    Google Scholar 

  16. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R et al. Inhibition of monoamine oxidase B in the brains of smokers Nature 1996 379: 733–736

    Article  CAS  PubMed  Google Scholar 

  17. Oreland L, Fowler CJ, Schalling D . Low platelet monoamine oxidase activity in cigarette smokers Life Sci 1981 29: 2511–2518

    Article  CAS  PubMed  Google Scholar 

  18. Oreland L, Garpenstrand H, Damberg M, Alm PO, Thorell LH, af Klinteberg B et al. The correlation between platelet MAO activity and personality—the effect of smoking and possible mechanisms behind the correlation Neurobiology (Bp) 1999 7: 191–203

    CAS  Google Scholar 

  19. Anthenelli RM, Tipp J, Li TK, Magnes L, Schuckit MA, Rice J et al. Platelet monoamine oxidase activity in subgroups of alcoholics and controls: results from the Collaborative Study on the Genetics of Alcoholism Alcohol Clin Exp Res 1998 22: 598–604

    Article  CAS  PubMed  Google Scholar 

  20. Oreland L, Hallman J . The correlation between platelet MAO activity and personality: short review of findings and a discussion on possible mechanisms Prog Brain Res 1995 106: 77–84

    Article  CAS  PubMed  Google Scholar 

  21. Oreland L, Wiberg A, Asberg M, Traskman L, Sjostrand L, Thoren P et al. Platelet MAO activity and monoamine metabolites in cerebrospinal fluid in depressed and suicidal patients and in healthy controls Psychiatry Res 1981 4: 21–29

    Article  CAS  PubMed  Google Scholar 

  22. Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF . Aggression in humans correlates with cerebrospinal fluid amine metabolites Psychiatry Res 1979 1: 131–139

    Article  CAS  PubMed  Google Scholar 

  23. Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, Lenane M et al. Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents Arch Gen Psychiatry 1990 47: 419–426

    Article  CAS  PubMed  Google Scholar 

  24. af Klinteberg B, Oreland L . Hyperactive and aggressive behaviors in childhood as related to low platelet monoamine oxidase (MAO) activity at adult age: a longitudinal study of male subjects Personal Indiv Diff 1995 19: 373–383

    Article  Google Scholar 

  25. Virkkunen M, Linnoila M . Brain serotonin, type II alcoholism and impulsive violence J Stud Alcohol Suppl 1993 11: 163–169

    Article  CAS  PubMed  Google Scholar 

  26. von Knorring L, Oreland L . Platelet MAO activity in type I/type II alcoholics Alcoholism & Alcoholism: Clin Exp Res 1996 20: 224A–230A

    Article  CAS  Google Scholar 

  27. Girmen AS, Baenziger J, Hotamisligil GS, Konradi C, Shalish C, Sullivan JL et al. Relationship between platelet monoamine oxidase B activity and alleles at the MAOB locus J Neurochem 1992 59: 2063–2066

    Article  CAS  PubMed  Google Scholar 

  28. Garpenstrand H, Ekblom J, Forslund K, Rylander G, Oreland L . Platelet monoamine oxidase activity is related to MAOB intron 13 genotype J Neural Transm 2000 107: 523–530

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Q-S, Grimsby J, Chen K, Shih JC . Promoter organization and activity of human monoamine oxidase (MAO) A and B genes J Neurosci 1992 12: 4437–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grimsby J, Lan NC, Neve R, Chen K, Shih JC . Tissue distribution of human monoamine oxidase A and B mRNA J Neurochem 1990 55: 1166–1169

    Article  CAS  PubMed  Google Scholar 

  31. Ekblom J, Zhu Q-S, Chen K, Shih JC . Monoamine oxidase gene transcription in human cell lines: treatment with psycho-active drugs and ethanol J Neural Transm 1996 103: 681–692

    Article  CAS  PubMed  Google Scholar 

  32. Prince J, Jia S, Bve U, Anneren G, Oreland L . Mitochondrial enzyme deficiencies in Down's syndrome J Neural Transm 1994 8: 171–181

    Article  CAS  Google Scholar 

  33. Ekblom J, Garpenstrand H, Damberg M, Chen K, Shih JC, Oreland L . Transcription factor binding to the core promoter of the human monoamine oxidase B gene in the cerebral cortex and in blood cells Neurosci Lett 1998 258: 101–104

    Article  CAS  PubMed  Google Scholar 

  34. Oulad-Abdelghani M, Bouillet P, Chazaud C, Dollé P, Chambon P . AP-2.2: a novel AP-2 related transcription factor induced by retinoic acid during differentiation of P19 embryonal carcinoma cells Exp Cell Res 1996 224: 338–347

    Article  Google Scholar 

  35. Chazaud C, Oulad-Abdelghani M, Bouillet P, Décimo D, Chambon P, Dollé P . AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis Mech Dev 1996 54: 83–94

    Article  CAS  PubMed  Google Scholar 

  36. Williams T, Tjian R . Analysis of the DNA-binding and activation properties of the human transcription factor AP-2 Genes Dev 1991 5: 670–682

    Article  CAS  PubMed  Google Scholar 

  37. Williams T, Tjian R . Characterization of a dimerization motif in AP-2 and its function in heterologous DNA binding proteins Science 1991 251: 1067–1071

    Article  CAS  PubMed  Google Scholar 

  38. Williams T, Admon A, Luscher B, Tjian R . Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements Genes Dev 1988 2: 1557–1569

    Article  CAS  PubMed  Google Scholar 

  39. Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC . A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma Oncogene 1996 13: 1701–1707

    CAS  PubMed  Google Scholar 

  40. Greco D, Zellmer E, Zhang Z, Lewis E . Transcription factor AP-2 regulates expression of the dopamine β-hydroxylase gene J Neurochem 1995 65: 510–516

    Article  CAS  PubMed  Google Scholar 

  41. Moser M, Pscherer A, Imhof A, Bauer R, Kerscher M, Amselgruber W et al. Cloning and characterisation of a second AP-2 transcription activator gene, AP-2β Development 1995 121: 2779–2788

    CAS  PubMed  Google Scholar 

  42. Roesler WJ, Vandenbark GR, Hanson RW . Cyclic AMP and the induction of eukaryotic gene transcription J Biol Chem 1988 263: 9063–9066

    CAS  PubMed  Google Scholar 

  43. Shimada M, Konishi Y, Ohkawa N, Othaka-Marutama C, Hanaok F, Makino Y et al. Distribution of AP-2 subtypes in the adult mouse brain Neurosci Res 1999 33: 275–280

    Article  CAS  PubMed  Google Scholar 

  44. Moser M, Pscherer A, Roth C, Becker J, Mücher G, Zerres K et al. Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2β Genes Dev 1997 11: 1938–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T . Dopamine β-hydroxylase gene: two mRNA types having different 3′-terminal regions are produced through alternative polyadenylation Nucleic Acids Res 1989 17: 1089–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McMahon M, Sabban E . Regulation of expression of dopamine β-hydroxylase in PC12 cells by glucocorticoids and cyclic AMP analogues J Neurochem 1992 59: 2040–2047

    Article  CAS  PubMed  Google Scholar 

  47. Healy DP, O'Rourke DA . Regulation of dopamine-1A (DIA) receptor gene transcription Clin Exp Hypertens 1997 19: 1–13

    Article  CAS  PubMed  Google Scholar 

  48. Hahn SL, Hahn M, Kang UJ, Joh TH . Structure of the rat aromatic L-amino acid decarboxylase gene: evidence for an alternative promoter usage J Neurochem 1993 60: 1058–1064

    Article  CAS  PubMed  Google Scholar 

  49. Bradely CC, Blakely RD . Alternative splicing of the human serotonin transporter gene J Neurochem 1997 69: 1356–1367

    Article  Google Scholar 

  50. Du YL, Wilcox BD, Teitler M, Jeffrey JJ . Isolation and characterization of the rat 5-hydroxytryptamine type 2 receptor promoter: constitutive and inducible activity in myometrial smooth muscle cells Mol Pharmacol 1994 45: 1125–1131

    CAS  PubMed  Google Scholar 

  51. Valdenaire O, Vernier P, Maus M, Dumas Milne Edwards JB, Mallet J . Transcription of the rat dopamine-D2-receptor gene from two promoters Eur J Biochem 1994 220: 577–584

    Article  CAS  PubMed  Google Scholar 

  52. Boularand S, Darmon MC, Ravassard P, Mallet J . Characterization of the human tryptophan hydroxylase gene promoter. Transcriptional regulation by cAMP requires a new motif distinct from the cAMP-responsive element J Biol Chem 1995 270: 3757–3764

    Article  CAS  PubMed  Google Scholar 

  53. Enzhong X, Lingyun Z, Long-Sheng C . The human serotonin 5-HT2c receptor: complete cDNA, genomic structure and alternatively spliced variant Genomics 1996 35: 551–561

    Article  Google Scholar 

  54. Damberg M, Garpenstrand H, Forslund K, Rylander G, Oreland L . A polymorphic region in the human transcription factor AP-2β gene is associated with specific personality traits Mol Psychiatry 2000 5: 220–224

    Article  CAS  PubMed  Google Scholar 

  55. Damberg M, Garpenstrand H, Berggard C, Asberg M, Hallman J, Oreland L . The genotype of human transcription factor AP-2beta is associated with platelet monoamine oxidase B activity Neurosci Lett 2000 291: 204–206

    Article  CAS  PubMed  Google Scholar 

  56. Damberg M, Ekblom J, Oreland L . Chronic pharmacological treatment with certain antidepressants alters the expression and DNA-binding activity of transcription factor AP-2 Life Sci 2000 68: 669–678

    Article  CAS  PubMed  Google Scholar 

  57. Stallings MC, Hewitt J-K, Cloninger CR, Heath AC, Eaves LJ . Genetic and environmental structure of the tridimensional personality questionnaire: three or four temperament dimensions J Pers Soc Psychol 1996 70: 127–140

    Article  CAS  PubMed  Google Scholar 

  58. Watson D, Clark LA . Negative affectivity: the disposition to experience aversive emotional states Psychol Bull 1984 96: 465–490

    Article  CAS  PubMed  Google Scholar 

  59. Helleday J, Edman G, Rietzen EM, Siwers B . Personality characteristics and platelet MAO activity in women with congenital adrenal hyperplasia (CAH) Psychoneuroendocrinology 1993 18: 343–354

    Article  CAS  PubMed  Google Scholar 

  60. Brewerton DT . Toward a unified theory of serotonin dysregulation in eating and related disorders Psychoneuroendocrinology 1995 20: 561–590

    Article  CAS  PubMed  Google Scholar 

  61. Linnoila M, Virkkunen M, George T, Higley D . Impulse control disorders Int Clin Psychopharmacol 1993 8 Suppl 1: 53–56

    Article  PubMed  Google Scholar 

  62. Lesch KP, Merschdorf U . Impulsivity, aggression, and serotonin: a molecular psychobiological perspective Behav Sci Law 2000 18: 581–604

    Article  CAS  PubMed  Google Scholar 

  63. Hallman J, Oreland L, Edman G, Schalling D . Thrombocyte monoamine oxidase activity and personality traits in women with severe premenstrual syndrome Acta Psychiatr Scand 1987 76: 225–234

    Article  CAS  PubMed  Google Scholar 

  64. Dziedzicka-Wasylewska M, Sobota R, Góralska M, Golembiowska K . Antidepressant drugs decrease the transcriptional activity of dopamine D2 receptor gene promoter in the NB41A3 cells—in vitro study Eur J Neuropsychopharmacol 2001 11 suppl 1: 8

    Google Scholar 

  65. Cyr M, Morisette M, Barden N, Beaulieu S, Rochford J, Di Paolo T . Dopaminergic activity in transgenic mice underexpressing glucocorticoid receptors: effect of antidepressants Neuroscience 2001 102: 151–158

    Article  CAS  PubMed  Google Scholar 

  66. Dziedzicka-Wasylewska M, Rogoz R, Klimek V, Maj J . Repeated administration of antidepressant drugs affects the levels of mRNA coding for D1 and D2 dopamine receptors in the rat brain J Neural Transm 1997 104: 515–524

    Article  CAS  PubMed  Google Scholar 

  67. Catalano M . Psychiatric genetics ’99. The challenges of psychopharmacogenetics Am J Hum Genetics 1999 65: 606–610

    Article  CAS  Google Scholar 

  68. Heguy A, Stewart AA, Haley JD, Smith DE, Foulkes JG . Gene expression as a target for new drug discovery Gene Expr 1995 4: 337–344

    CAS  PubMed  Google Scholar 

  69. Butt T, Karathanasis SK . Transcription factors as drug targets: opportunities for therapeutic selectivity Gene Expr 1995 4: 319–336

    CAS  PubMed  Google Scholar 

  70. Hurley HL . DNA and associated targets for drug design J Med Chem 1989 32: 2027–2033

    Article  CAS  PubMed  Google Scholar 

  71. Pennypacker KR . Pharmacological regulation of transcription factor binding Pharmacology 1995 51: 1–12

    Article  CAS  PubMed  Google Scholar 

  72. Oreland L, Shaskan EG . Monoamine oxidase activity as a biological marker Trends Pharmacol Sci 1983 4: 339–341

    Article  CAS  Google Scholar 

  73. Faisst S, Meyer S . Compilation of vertebrate-encoded transcription factors Nucleic Acids Res 1992 20: 3–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell PJ, Timmons PM, Herbert JM, Rigby PW, Tjian R . Transcription factor AP-2 is expressed in neural crest lineages during mouse embryogenesis Genes Dev 1991 5: 105–119

    Article  CAS  PubMed  Google Scholar 

  75. Moser M, Rüschoff J, Buettner R . Comparative analysis of AP-2α and AP-2β gene expression during murine embryogenesis Dev Dyn 1997 208: 115–124

    Article  CAS  PubMed  Google Scholar 

  76. Hartmann J, Kunig G, Riederer P . Involvement of transmitter systems in neuropsychiatric diseases Acta Neurol Scand Suppl 1993 146: 18–21

    CAS  PubMed  Google Scholar 

  77. Cravchik A, Goldman D . Neurochemical individuality: genetic diversity among human dopamine and serotonin receptors and transporters Arch Gen Psychiatry 2000 57: 1105–1114

    Article  CAS  PubMed  Google Scholar 

  78. Depue RA, Collins PF . Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion Behav Brain Sci 1999 22: 491–569

    CAS  PubMed  Google Scholar 

  79. Zuckerman M . P-impulsive sensation seeking and its behavioral, psychophysiological and biochemical correlates Neuropsychobiology 1993 28: 30–36

    Article  CAS  PubMed  Google Scholar 

  80. Koob GF, Nestler EJ . The neurobiology of drug addiction J Neuropsychiatry Clin Neurosci 1997 9: 482–497

    Article  CAS  PubMed  Google Scholar 

  81. Collier DA, Stober G, Li T, Heils A, Catalano M, Di Bella D et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders Mol Psychiatry 1996 1: 453–460

    CAS  PubMed  Google Scholar 

  82. Hallikainen T, Saito T, Lachman HM, Volavka J, Pohjalainen T, Ryynanen OP et al. Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior Mol Psychiatry 1999 4: 385–388

    Article  CAS  PubMed  Google Scholar 

  83. Baker H, Joh TH, Reis DJ . Genetic control of number of midbrain dopaminergic neurons in inbred strains of mice: relationship to size and neuronal density of the striatum Proc Natl Acad Sci USA 1980 77: 4369–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fink JS, Reis DJ . Genetic variations in midbrain dopamine cell number: parallel with differences in responses to dopaminergic agonists and in naturalistic behaviors mediated by central dopaminergic systems Brain Res 1981 222: 335–349

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Oreland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damberg, M., Garpenstrand, H., Hallman, J. et al. Genetic mechanisms of behavior—don't forget about the transcription factors. Mol Psychiatry 6, 503–510 (2001). https://doi.org/10.1038/sj.mp.4000935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000935

Keywords

This article is cited by

Search

Quick links