Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of the soluble guanylyl cyclase α1-subunit in mice corpus cavernosum smooth muscle relaxation

Abstract

Soluble guanylyl cyclase (sGC) is the major effector molecule for nitric oxide (NO) and as such an interesting therapeutic target for the treatment of erectile dysfunction. To assess the functional importance of the sGCα1β1 isoform in corpus cavernosum (CC) relaxation, CC from male sGCα1−/− and wild-type mice were mounted in organ baths for isometric tension recording. The relaxation to endogenous NO (from acetylcholine, bradykinin and electrical field stimulation) was nearly abolished in the sGCα1−/− CC. In the sGCα1−/− mice, the relaxing influence of exogenous NO (from sodium nitroprusside and NO gas), BAY 41-2272 (NO-independent sGC stimulator) and T-1032 (phosphodiesterase type 5 inhibitor) were also significantly decreased. The remaining exogenous NO-induced relaxation seen in the sGCα1−/− mice was significantly decreased by the sGC-inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The specificity of the impairment of the sGC-related responses was demonstrated by the unaltered relaxations seen with forskolin (adenylyl cyclase activator) and 8-pCPT-cGMP (cGMP analog). In conclusion, the sGCα1β1 isoform is involved in corporal smooth muscle relaxation in response to NO and NO-independent sGC stimulators. The fact that there is still some effect of exogenous NO in the sGCα1−/− mice suggests the contribution of (an) additional pathway(s).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andersson KE, Wagner G . Physiology of penile erection. Physiol Rev 1995; 75: 191–236.

    Article  CAS  PubMed  Google Scholar 

  2. Kim N, Azadzoi KM, Goldstein I, Saenz de Tejada I . A nitric oxide-like factor mediates nonadrenergic-noncholinergic neurogenic relaxation of penile corpus cavernosum smooth muscle. J Clin Invest 1991; 88: 112–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hurt KJ, Musicki B, Palese MA, Crone JK, Becker RE, Moriarity JL et al. Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc Natl Acad Sci USA 2002; 99: 4061–4066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toda N, Ayajiki K, Okamura T . Nitric oxide and penile erectile function. Pharmacol Ther 2005; 106: 233–266.

    Article  CAS  PubMed  Google Scholar 

  5. Musicki B, Burnett AL . eNOS function and dysfunction in the penis. Exp Biol Med (Maywood) 2006; 231: 154–165.

    Article  CAS  Google Scholar 

  6. Friebe A, Koesling D . Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 2003; 93: 96–105.

    Article  CAS  PubMed  Google Scholar 

  7. Lohmann SM, Vaandrager AB, Smolenski A, Walter U, de Jonge HR . Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci 1997; 22: 307–312.

    Article  CAS  PubMed  Google Scholar 

  8. Hedlund P, Aszodi A, Pfeifer A, Alm P, Hofmann F, Ahmad M et al. Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci USA 2000; 97: 2349–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garbers DL . Purification of soluble guanylate cyclase from rat lung. J Biol Chem 1979; 254: 240–243.

    CAS  PubMed  Google Scholar 

  10. Harteneck C, Koesling D, Soling A, Schultz G, Bohme E . Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett 1990; 272: 221–223.

    Article  CAS  PubMed  Google Scholar 

  11. Koesling D, Herz J, Gausepohl H, Niroomand F, Hinsch KD, Mulsch A et al. The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Lett 1988; 239: 29–34.

    Article  CAS  PubMed  Google Scholar 

  12. Yuen PS, Potter LR, Garbers DL . A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry 1990; 29: 10872–10878.

    Article  CAS  PubMed  Google Scholar 

  13. Harteneck C, Wedel B, Koesling D, Malkewitz J, Bohme E, Schultz G . Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett 1991; 292: 217–222.

    Article  CAS  PubMed  Google Scholar 

  14. Russwurm M, Behrends S, Harteneck C, Koesling D . Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 1998; 335(Part 1): 125–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mergia E, Russwurm M, Zoidl G, Koesling D . Major occurrence of the new alpha2beta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 2003; 15: 189–195.

    Article  CAS  PubMed  Google Scholar 

  16. Ushiyama M, Morita T, Kuramochi T, Yagi S, Katayama S . Erectile dysfunction in hypertensive rats results from impairment of the relaxation evoked by neurogenic carbon monoxide and nitric oxide. Hypertens Res 2004; 27: 253–261.

    Article  CAS  PubMed  Google Scholar 

  17. Burnett AL, Johns DG, Kriegsfeld LJ, Klein SL, Calvin DC, Demas GE et al. Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2. Nat Med 1998; 4: 84–87.

    Article  CAS  PubMed  Google Scholar 

  18. Schachter M . Erectile dysfunction and lipid disorders. Curr Med Res Opin 2000; 16(Suppl 1): s9–s12.

    Article  PubMed  Google Scholar 

  19. Saenz de Tejada I, Goldstein I, Azadzoi K, Krane RJ, Cohen RA . Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Engl J Med 1989; 320: 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  20. Abdel-Gawad M, Huynh H, Brock GB . Experimental chronic renal failure-associated erectile dysfunction: molecular alterations in nitric oxide synthase pathway and IGF-I system. Mol Urol 1999; 3: 117–125.

    CAS  PubMed  Google Scholar 

  21. Morales A, Gingell C, Collins M, Wicker PA, Osterloh IH . Clinical safety of oral sildenafil citrate (VIAGRA) in the treatment of erectile dysfunction. Int J Impot Res 1998; 10: 69–73.

    Article  CAS  PubMed  Google Scholar 

  22. Goldenberg MM . Safety and efficacy of sildenafil citrate in the treatment of male erectile dysfunction. Clin Ther 1998; 20: 1033–1048.

    Article  CAS  PubMed  Google Scholar 

  23. Sips P, Buys E, Rogge E, Dewerchin M, Brouckaert P . Functional knockout of the soluble guanylate cyclase alpha 1 subunit leads to gender-specific hypertension while retaining sensitivity to nitric oxide. Circulation 2005; 112: 17–A747, Abstract.

    Google Scholar 

  24. Kelm M, Schrader J . Control of coronary vascular tone by nitric oxide. Circ Res 1990; 66: 1561–1575.

    Article  CAS  PubMed  Google Scholar 

  25. Takagi M, Mochida H, Noto T, Yano K, Inoue H, Ikeo T et al. Pharmacological profile of T-1032, a novel specific phosphodiesterase type 5 inhibitor, in isolated rat aorta and rabbit corpus cavernosum. Eur J Pharmacol 2001; 411: 161–168.

    Article  CAS  PubMed  Google Scholar 

  26. Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A et al. NO-independent regulatory site on soluble guanylate cyclase. Nature 2001; 410: 212–215.

    Article  CAS  PubMed  Google Scholar 

  27. Nakane M, Hsieh G, Miller LN, Chang R, Terranova MA, Moreland RB et al. Activation of soluble guanylate cyclase causes relaxation of corpus cavernosum tissue: synergism of nitric oxide and YC-1. Int J Impot Res 2002; 14: 121–127.

    Article  CAS  PubMed  Google Scholar 

  28. Nimmegeers S, Sips P, Buys E, Brouckaert P, Van de Voorde J . Functional role of the soluble guanylyl cyclase alpha 1 subunit in vascular smooth muscle relaxation. Cardiovasc Res 2007; 76: 149–159.

    Article  CAS  PubMed  Google Scholar 

  29. Wanigasekara Y, Kepper ME, Keast JR . Immunohistochemical characterisation of pelvic autonomic ganglia in male mice. Cell Tissue Res 2003; 311: 175–185.

    PubMed  Google Scholar 

  30. Ottesen B, Fahrenkrug J . Vasoactive intestinal polypeptide and other preprovasoactive intestinal polypeptide-derived peptides in the female and male genital tract: localization, biosynthesis, and functional and clinical significance. Am J Obstet Gynecol 1995; 172: 1615–1631.

    Article  CAS  PubMed  Google Scholar 

  31. Steers WD, McConnell J, Benson GS . Anatomical localization and some pharmacological effects of vasoactive intestinal polypeptide in human and monkey corpus cavernosum. J Urol 1984; 132: 1048–1053.

    Article  CAS  PubMed  Google Scholar 

  32. Uckert S, Hedlund P, Waldkirch E, Sohn M, Jonas U, Andersson KE et al. Interactions between cGMP- and cAMP-pathways are involved in the regulation of penile smooth muscle tone. World J Urol 2004; 22: 261–266.

    Article  PubMed  Google Scholar 

  33. Gupta S, Moreland RB, Munarriz R, Daley J, Goldstein I, Saenz de Tejada I et al. Possible role of Na(+)-K(+)-ATPase in the regulation of human corpus cavernosum smooth muscle contractility by nitric oxide. Br J Pharmacol 1995; 116: 2201–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Homer KL, Wanstall JC . Cyclic GMP-independent relaxation of rat pulmonary artery by spermine NONOate, a diazeniumdiolate nitric oxide donor. Br J Pharmacol 2000; 131: 673–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Masson P, Lambert SM, Brown M, Shabsigh R . PDE-5 inhibitors: current status and future trends. Urol Clin North Am 2005; 32: 511–525, viii.

    Article  PubMed  Google Scholar 

  36. Koglin M, Stasch JP, Behrends S . BAY 41-2272 activates two isoforms of nitric oxide-sensitive guanylyl cyclase. Biochem Biophys Res Commun 2002; 292: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  37. Teixeira CE, Priviero FB, Todd Jr J, Webb RC . Vasorelaxing effect of BAY 41-2272 in rat basilar artery: involvement of cGMP-dependent and independent mechanisms. Hypertension 2006; 47: 596–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the DMBR animal caretakers for maintaining the animal facility and Cyriel Mabilde for the construction of the adapted holders in the myograph. This work was supported by a grant of FWO-Vlaanderen and the Bijzonder Onderzoeksfonds (BOF-GOA) of Ghent University. EB was supported by an award from the Northeast Affiliate Research Committee of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Van de Voorde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimmegeers, S., Sips, P., Buys, E. et al. Role of the soluble guanylyl cyclase α1-subunit in mice corpus cavernosum smooth muscle relaxation. Int J Impot Res 20, 278–284 (2008). https://doi.org/10.1038/sj.ijir.3901627

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901627

Keywords

This article is cited by

Search

Quick links