Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Petrological evidence for shock melting of carbonates in the martian meteorite ALH84001

Abstract

The meteorite ALH84001—a shocked igneous rock of probable martian origin—contains chemically and isotopically heterogeneous carbonate globules1–8, associated with which are organic and inorganic structures that have been interpreted7 as possible fossil remains of ancient martian biota. A critical assumption underlying this suggestion is that the carbonates formed from low-temperature fluids penetrating the cracks and voids of the host rock3. Here we report petrological studies of ALH84001 which investigate the effects of shock on the various mineralogical components of the rock. We find that carbonate, plagioclase and silica were melted and partly redistributed by the same shock event responsible for the intense local crushing1,2 of pyroxene in the meteorite. Texture and compositional data show that, during the period of shock decompression, monomineralic melts were injected into pyroxene fractures that were subsequently cooled and resealed within seconds. Our results therefore suggest that the carbonates in ALH84001 could not have formed at low temperatures, but instead crystallized from shock-melted material; this conclusion weakens significantly the arguments that these carbonates could host the fossilized remnants of biogenic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mittlefehldt, D. W. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics 29, 214–221 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Treiman, A. H. A petrographic history of martian meteorite ALH84001: two shocks and an ancient age. Meteoritics 30, 294–302 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Romanek, C.S. et al. Record of fluid-rock interactions on Mars from the meteorite ALH84001. Nature 372, 655–657 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Jull, A. J. T., Eastoe, C. J., Xue, S. & Herzog, G. F. Isotopic composition of carbonates in the SNC meteorites Allan Hills 84001 and Nakhla. Meteoritics 30, 311–318 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Jull, A. J. T., Eastoe, C. J. & Cloudt, S. Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami. J. Geophys. Res. 102, 1663–1669 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Harvey, R. P. & McSween, H. Y. Jr A possible high-temperature origin for the carbonates in the martian meteorite ALH84001. Nature 382, 49–51 (1996).

    Article  ADS  CAS  Google Scholar 

  7. McKay, D. S. et al. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924–930 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Valley, J. W. et al. Low-temperature carbonate concretions in the martian meteorite ALH84001: evidence from stable isotopes and mineralogy. Science 275, 1633–1638 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Kirschvink, J. L., Maine, A. T. & Vali, H. Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science 275, 1629–1633 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Stöffler, D. Glasses formed by hypervelocity impact. J. Non-cryst. Solids 67, 465–502 (1984).

    Article  ADS  Google Scholar 

  11. Thomas, K. L. et al. Microanalysis of unique fine-grained minerals in the martian meteorite ALH84001. Lunar Planet. Sci. 27, 1327–1328 (1996).

    ADS  Google Scholar 

  12. Stöffler, D. et al. Shock metamorphism and petrography of the Shergotty achondrite. Geochim. Cosmochim. Acta 50, 889–903 (1986).

    Article  ADS  Google Scholar 

  13. Stöffler, D., Keil, K. & Scott, E. R. D. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845–3867 (1991).

    Article  ADS  Google Scholar 

  14. Schaal, R. B. & Hörz, F. Shock metamorphism of lunar and terrestrial basalts. Proc. Lunar Sci. Conf. 8, 1697–1729 (1977).

    ADS  CAS  Google Scholar 

  15. Rubin, A. E. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochim. Cosmochim. Acta 56, 1705–1714 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Bischoff, A., Rubin, A. E., Keil, K. & Stöffler, D. Lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting. Earth Planet. Sci. Lett. 66, 1–10 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Chen, M., Sharp, T. G., El Goresy, A., Wopenka, B. & Xie, X. The majorite-pyrope + magnesiowüstite assemblage: constraints on the history of shock veins in chondrites. Science 271, 1570–1573 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Joreau, P., Leroux, H. & Doukhan, J.-C. A transmission electron microscope investigation of shock metamorphism in olivine of the Ilafegh 013 chondrite. Meteorit. Planet. Sci. 32, 309–316 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Stöffler, D., Bischoff, A., Buchwald, V. F. & Rubin, A. E. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews M. S.) 165–202 (Univ. Arizona Press, Tucson, 1988).

    Google Scholar 

  20. Schmitt, R. T., Deutsch, A. & Stöffler, D. Shock recovery experiments with the H6 chondrite Kernouvé at preshock temperatures of 293 and 920 K. Meteoritics 29, 529–530 (1994).

    Google Scholar 

  21. Dobson, D. P. et al. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207–215 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Lee, W.-J. & Wyllie, P. J. Liquid immiscibility in the join NaAlSi3O8-CaCO3 to 2.5 GPa and the origin of calciocarbonatite magmas. J. Petrol. 37, 1125–1152 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Martinez, I. et al. Shock recovery experiments on dolomite and thermodynamical calculations of impact induced decarbonation. J. Geophys. Res. 100, 15465–15476 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Lange, M. A. & Ahrens, T. J. Shock-induced CO2 loss from CaCO3; implications for early planetary atmospheres. Earth Planet. Sci. Lett. 77, 409–418 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Dence, M. R., von Engelhardt, W., Plant, A. G. & Walter, L. S. Implications of fluid immiscibility in glass from West Clearwater Lake Impact Crater, Quebec, Canada. Contrib. Mineral. Petrol. 46, 81–97 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Wyllie, P. J. in Carbonatites: Genesis and Evolution (ed. Bell, K.) 500–545 (Unwin Hyman, London, 1989).

    Google Scholar 

  27. Irving, A. J. & Wyllie, P. J. Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36kb. Geochim. Cosmochim. Acta 39, 35–53 (1975).

    Article  ADS  CAS  Google Scholar 

  28. lonov, D. A. et al. Carbonated peridotite xenoliths from Spitzbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett. 119, 283–297 (1993).

    Article  ADS  Google Scholar 

  29. Wright, I. P., Grady, M. M. & Pillinger, C. T. Organic materials in a martian meteorite. Nature 340, 220–222 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Semenenko, V. P. & Golovka, N. V. Shock-induced black veins and organic compounds in ordinary chondrites. Geochim. Cosmochim. Acta 58, 1525–1535 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, E., Yamaguchi, A. & Krot, A. Petrological evidence for shock melting of carbonates in the martian meteorite ALH84001. Nature 387, 377–379 (1997). https://doi.org/10.1038/387377a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387377a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing