Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina

Abstract

VISUAL information is conveyed to the brain by retinal ganglion cells. Midget ganglion cells serve fine spatial vision1,2 by summing excitation from a receptive field 'centre', receiving input from a single cone in the central retina, with lateral inhibition from a receptive field 'surround', receiving input from many surrounding cones. Midget ganglion cells are also thought to serve colour opponent vision1–6 because the centre excitation is from a cone of one spectral type, while the surround inhibition is from cones of the other type4,6. The two major cone types, middle (M)- and long-(L)wavelength sensitive, are equally numerous and randomly distributed in the primate central retina7–9, so a spectrally homogeneous surround requires that the cells mediating lateral interactions (horizontal or amacrine cells) receive selective input from only one cone type. Horizontal cells cannot do this because they receive input indiscriminately from M and L cones10–12. Here we report that the amacrine cells connected to midget ganglion cells are similarly indiscriminate. The absence of spectral specificity in the inhibitory wiring raises doubt about the involvement of midget ganglion cells in colour vision and suggests that colour opponency may instead be conveyed by a different type of ganglion cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Merigan, W. H., Katz, L. M. & Maunsell, J. H. R. J. Neurosci. 11, 994–1001 (1991).

    Article  CAS  Google Scholar 

  2. Schiller, P. H., Logothetis, N. K. & Charles, E. R. Nature 343, 68–70 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Derrington, A. M., Krauskopf, J. & Lennie, P. J. Physiol., Lond. 357, 241–265 (1984).

    Article  CAS  Google Scholar 

  4. Reid, R. C. & Shapley, R. M. Nature 356, 716–718 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Kolb, H. & Dekorver, L. J. comp. Neurol. 303, 617–636 (1991).

    Article  CAS  Google Scholar 

  6. Lee, B. B. Vision Res. 36, 631–644 (1996) .

    Article  CAS  Google Scholar 

  7. Mollon, J. D. & Bowmaker, J. K. Nature 360, 677–679 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Calkins, D. J., Schein, S. J., Tsukamoto, Y. & Sterling, P. Nature 371, 70–72 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Packer, O. S., Williams, D. R. & Bensinger, D. G. J. Neurosci. 16, 2251–2260 (1996).

    Article  CAS  Google Scholar 

  10. Boycott, B. B., Hopkins, J. M. & Sperling, H. G. Proc. R. Soc. Lond. B 229, 345–379 (1987).

    ADS  CAS  PubMed  Google Scholar 

  11. Wässle, H., Boycott, B. B. & Röhrenbeck, J. Eur. J. Neurosci. 1, 421–435 (1989).

    Article  Google Scholar 

  12. Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J. & Smith, V. C. Science 271, 656–659 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Dowling, J. E. & Boycott, B. B. Proc. R. Soc. Lond. B 166, 80–111 (1966).

    ADS  CAS  Google Scholar 

  14. Boycott, B. B. & Wässle, H. Eur. J. Neurosci. 3, 1069–1088 (1991).

    Article  Google Scholar 

  15. Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S. J. Soc. Neurosci. Abstr. 18, 352.5 (1992).

    Google Scholar 

  16. Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S. J. Invest. Ophthalmol. vis. Sci. (suppl.) 34, 1398 (1993).

    Google Scholar 

  17. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  18. Derrington, A. M. & Lennie, P. J. Physiol., Lond. 357, 219–240 (1984).

    Article  CAS  Google Scholar 

  19. Zrenner, E. Neurophysiological Aspects of Color Vision in Primates (Springer, Berlin, 1983).

    Book  Google Scholar 

  20. Kaplan, E., Lee, B. B. & Shapley, R. M. in Prog. Retin. Res. 9, 273–336 (1990).

    Article  Google Scholar 

  21. Lennie, P., Haake, P. W. & Williams, D. R. in Computational Models of Visual Processing (eds Landy, M. S. & Movshon, J. A.) 71–82 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  22. Rodieck, R. W. in From Pigments to Perception (eds Valberg, A. & Lee, B. B.) 83–93 (Plenum, New York, 1991).

    Book  Google Scholar 

  23. Tsukamoto, Y., Masarachia, P., Schein, S. J. & Sterling, P. Vision Res. 32, 1809–1815 (1992).

    Article  CAS  Google Scholar 

  24. DeMonasterio, F. M. J. Neurophysiol. 41, 1418–1434 (1978).

    Article  CAS  Google Scholar 

  25. Croner, L. J. & Kaplan, E. Vision Res. 35, 7–24 (1995).

    Article  CAS  Google Scholar 

  26. Grünert, U. & Wässle, H. J. comp. Neurol. 297, 509–524 (1990).

    Article  Google Scholar 

  27. Vardi, N. & Sterling, P. Vision Res. 34, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  28. Vardi, N., Kaufman, D. L. & Sterling, P. Vis. Neurosci. 11, 135–142 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calkins, D., Sterling, P. Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature 381, 613–615 (1996). https://doi.org/10.1038/381613a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381613a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing