Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismicity and stress rotation in a granular model of the brittle crust

Abstract

THE basic mechanical process responsible for earthquakes and faulting is not known. The intuitive notion of frictional slip on faults between elastic crustal blocks cannot be reconciled with laboratory measurements of the strength of rocks1, field observations of heat flow2,3 and stress orientation4 around the San Andreas fault in California, and seismological estimates of the energy radiated by earthquakes5. The weakening of large faults by elevated pore-fluid pressure6 has been suggested as one solution to this paradox, but places severe constraints on the hydrological conditions of the faults concerned. Here I propose an alternative model for earthquake mechanics, in which the crust is treated as a system of many interlocking blocks divided by many faults7. The model combines this random granular structure with simple, deterministic mechanical interactions. Numerical simulations of the deformation of an aggregate of rough grains under compressive stress show earthquake-like elastodynamic failures without frictional heat production, and substantial rotation of stresses across shear zones, which mimics field observations. There remain problems of scale in comparing these simulations with nature, but a seismological test of the model may be possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Byerlee, J. Pure appl. Geophys. 116, 615–626 (1976).

    Article  ADS  Google Scholar 

  2. Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 85, 6185–6222 (1980).

    Article  ADS  Google Scholar 

  3. Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 97, 4995–5015 (1992).

    Article  ADS  Google Scholar 

  4. Zoback, M. D. et al. Science 238, 1105–1111 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Kanamori, H. A. Rev. Earth planet. Sci. 22, 207–237 (1994).

    Article  ADS  Google Scholar 

  6. Rice, J. R. in Fault Mechanics and Transport Properties in Rocks (eds Evans, B. & Wong T.-F.) 475–503 (Academic, San Diego, 1992).

    Google Scholar 

  7. King, G. C. P. Pure appl. Geophys. 121, 761–814 (1983).

    Article  ADS  Google Scholar 

  8. Cundall, P. A. & Strack, O. D. L. Geotechnique 29, 47–65 (1979).

    Article  Google Scholar 

  9. Corkum, B. T. & Ting, J. M. Publication 86–11 (Dept of Civil Engng, Univ. Toronto, 1986).

  10. Poschel, T. & Buchholtz, V. Phys. Rev. Lett. 71, 3963–3966 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Lockner, D. Int. J. Rock 30, 883–899 (1993).

    Article  Google Scholar 

  12. Scott, D. R. Eos (abstr.) 75, 614 (1994).

    Google Scholar 

  13. Mora, P. & Place, D. Pure appl. Geophys. 143, 61–87 (1994).

    Article  ADS  Google Scholar 

  14. Yoshida, T., Tatsuoka, F., Siddiquee, M. S. A., Kamegai, Y. & Park, C. S. in Localisation and Bifurcation Theory for Soils and Rocks (eds Chambon, R., Desrue, J. & Vardoulakis, I.) 165–179 (A. A. Balkema, Rotterdam, 1994).

    Google Scholar 

  15. Ord, A., Vardoulakis, I. & Kajewski, R. Int. J. Rock 28, 397–409 (1991).

    Article  Google Scholar 

  16. Cundall, P. A. Ing. Arch. 59, 148–159 (1989).

    Article  Google Scholar 

  17. Bardet, J.-P. & Proubet, J.-P. Geotechnique 41, 599–613 (1991).

    Article  Google Scholar 

  18. Hobbs, B. E. & Ord, A. Ing. Arch. 59, 209–220 (1989).

    Article  Google Scholar 

  19. Poliakov, A. N. B., Herrmann, H. J., Podladchikov, Y. Y. & Roux, S. Fractals 2, 567–581 (1994).

    Article  Google Scholar 

  20. Rudnicki, J. W. & Rice, J. R. Int. J. Mech. Phys. Solids 23, 371–394 (1975).

    Article  ADS  Google Scholar 

  21. Vardoulakis, I. Ing. Arch. 59, 106–113 (1989).

    Article  Google Scholar 

  22. Muhlhaus, H. B. & Vardoulakis, I. Geotechnique 37, 271–283 (1987).

    Article  Google Scholar 

  23. Massonnet, D. et al. Nature 364, 138–142 (1993).

    Article  ADS  Google Scholar 

  24. Cundall, P. A. in Mechanics of Jointed and Faulted Rock (ed. Rossmanith, H.-P.) 11–18 (Balkema, Rotterdam, 1990).

    Google Scholar 

  25. Streacy, S. J. & Sammis, C. G. Nature 353, 250–252 (1991).

    Article  ADS  Google Scholar 

  26. Hickman, S. H. Rev. Geophys. Suppl. Ser. 29, 759–775 (1991).

    ADS  Google Scholar 

  27. Dieterich, J. H. Tectonophysics 211, 115–134 (1992).

    Article  ADS  Google Scholar 

  28. Ohnaka, M. Tectonophysics 211, 149–178 (1992).

    Article  ADS  Google Scholar 

  29. Heaton, T. H. Phys. Earth planet. Inter. 64, 1–20 (1990).

    Article  ADS  Google Scholar 

  30. Brune, J. N., Brown, S. & Johnson, P. A. Tectonophysics 218, 59–67 (1993).

    Article  ADS  Google Scholar 

  31. Sammis, C. G. & Steacy, S. J. Pure appl. Geophys. 142, 777–794 (1994).

    Article  ADS  Google Scholar 

  32. Abercrombie, R. & Leary, P. Geophys. Res. Lett. 20, 1511–1514 (1993).

    Article  ADS  Google Scholar 

  33. Melosh, H. J. Nature 379, 601–606 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Sornette, A., Sornette, D. & Evesque, P. Nonlin. Process. Geophys. 1, 209–218 (1994).

    Article  ADS  Google Scholar 

  35. Aki, K., Bouchon, M., Chouet, B. & Das, S. Ann. Geofis. XXX, 341 (1977).

    Google Scholar 

  36. Liu, C.-h. et al. Science 269, 513–515 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, D. Seismicity and stress rotation in a granular model of the brittle crust. Nature 381, 592–595 (1996). https://doi.org/10.1038/381592a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381592a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing