Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A universal scaling law for atomic diffusion in condensed matter

An Addendum to this article was published on 01 June 2001

Abstract

THERE is currently no unifying quantitative description of atomic diffusion in condensed matter. Analytic expressions have been obtained for the transport coefficients of an idealized dense fluid of hard spheres1,2, but their generalization to the rich variety of atomic structures in real condensed systems remains a challenge. Here I present evidence from molecular dynamics simulations that a universal relationship exists between the structure and the equilibrium rate of atomic diffusion in liquids and solids. I find that the diffusion coefficient, reduced to a dimensionless form by scaling by the atomic collision frequency and the atomic diameter, is uniquely defined by the excess entropy, a measure of the number of accessible configurations of the system. A scaling law relating these two quantities holds well for simple liquids, and also remains applicable to atomic transport in a quasicrystal and to silver-ion diffusion in the solid-state ionic conductor α-AgI. This makes it possible to estimate diffusion coefficients directly from diffraction measurements of an equilibrium structural characteristic, namely the radial distribution function of the diffusing species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boon, J. P. & Yip, S. Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  2. Cohen, E. D. G. Physica A194, 229–257 (1993).

    Article  MathSciNet  CAS  Google Scholar 

  3. Cohen, E. D. G. & de Schepper, I. M. J. statist. Phys. 63, 241–248 (1991).

    Article  ADS  Google Scholar 

  4. Kirkpatrick, T. R. & Niewoudt, J. C. Phys. Rev. A33, 2658–2662 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Chapman, S. & Cowling, T. G. The Mathematical Theory of Non-uniform Gases (Cambridge Univ. Press, 1939).

    MATH  Google Scholar 

  6. Baranyai, A. & Evans, D. Phys. Rev. A40, 3817–3822 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Mountain, R. D. & Raveche, H. J. chem. Phys. 35, 2250–2255 (1971).

    Article  ADS  Google Scholar 

  8. Hansen, J.-P. & McDonald, R. Theory of Simple Liquids (Academic, London, 1976).

    MATH  Google Scholar 

  9. Dzugutov, M. Phys. Rev. A46, 2924–2927 (1992).

    Article  Google Scholar 

  10. Stillinger, F. & La Violette, R. A. J. chem. Phys. 83, 6413–6418 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Dzugutov, M., Alvarez, M. & Lomba, E. J. Phys.: Condens. Matter 6, 4419–4428 (1994).

    ADS  CAS  Google Scholar 

  12. Dzugutov, M., Larsson, K.-E. & Ebbsjö, I. Phys. Rev. A38, 3609–3618 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Cucier, R. I. & Mehaffey, J. R. Phys. Rev. B18, 1202–1213 (1978).

    Article  ADS  Google Scholar 

  14. Dzugutov, M. Europhys. Lett. 26, 533–538 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Dzugutov, M. Phys. Rev. Lett. 70, 2924–2927 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Dzugutov, M. Europhys. Lett. 31, 95–100 (1995).

    Article  ADS  CAS  Google Scholar 

  17. McGreevy, R., Chahid, A. & Ebbsjö, I. in Annual Report 1995 (Studsvik Neutron Research Lab., Nyköping, Sweden, 1996).

  18. Vashista, P. & Rahman, A. Phys. Rev. Lett. 40, 1337–1340 (1978).

    Article  ADS  Google Scholar 

  19. Angell, C. A. Chem. Rev. 90, 523–542 (1990).

    Article  CAS  Google Scholar 

  20. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Aasland, S. & McMillan, P. F. Nature 369, 633–636 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E. & Angell, C. A. Phys. Rev. Lett. 73, 1632–1635 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Angell, C. A. J. phys. Chem. 97, 6339–6342 (1993).

    Article  CAS  Google Scholar 

  24. Adam, G. & Gibbs, J. H. J. chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzugutov, M. A universal scaling law for atomic diffusion in condensed matter. Nature 381, 137–139 (1996). https://doi.org/10.1038/381137a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381137a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing