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SCIENTIFIC CORRESPONDENCE 

Turing patterns in fish skin? 
SIR - Kondo and Asai1 interpret obseiv­
ations on the time evolution of skin 
patterns of the angelfish (Pomacanthus) 
as the first instance of a Turing (reac­
tion-diffusion) pattern in biology. But we 
believe that reaction-diffusion systems 
per se cannot provide a mechanistic basis 
for one of the main patterns reported in 
ref. 1. 

Reaction-diffusion systems are charac­
terized by an intrinsic spatial wavelength 
of the self-organized concentration pat­
tern, that is, the distance between adjacent 
peaks of chemical concentrations is deter­
mined solely by the system parameters 
(kinetic constants and diffusion coeffi­
cients). Although on a two-dimensional 
domain such as the fish skin, several 
equidistant geometrical arrangements of 
the concentration peaks are possible, the 
nonlinear terms of the reaction dynamics 
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usually select only one of these possibili­
ties - for the system chosen by Kondo 
and Asai, a regular array of stripes. These 
two features, an intrinsic wavelength and a 
strong tendency to form stripes, are the 
essential ingredients of the simulations 
they presented in ref. 1. Many pattern­
forming systems other than reaction-diffu­
sion are known which select an intrinsic 
spatial wavelength and pattern geometry2, 
among them biologically relevant mech­
anisms involving chemotactic or haptotac­
tic cell movement and mechanical forces3• 

Therefore, there is no justification for 
equating obseived patterns with a partic­
ular mechanism, as suggested in ref. 1. 

Although our point does not exclude 
the possibility that a Turing system under­
lies the Pomacanthus skin patterns, we 
demonstrate here that its properties are 
not sufficient to explain perhaps the most 

striking observation of the 
paper, the regular insertion 
of new stripes between 
older ones during the 
growth of Pomacanthus 
semicirculatus. We have 
solved the authors' reac­
tion-diffusion equations on 
a growing, two-dimensional 
domain - a more realistic 
representation of the fish 
skin than the one-dimen­
sional domain used in ref. 1. 

Behaviour of the Turing system proposed in ref. 1 on a grcm­
ing square domain (with the signs of the diffusion terms cor­
rected). a, Concentration plot of A in a horizontal cross-section 
of the domain; time increases from bottom to top (see sepa­
rate scales). The 4-stripe pattern produced by the first period­
doubling is unstable, rearranges into a 3-stripe pattern 
perpendicular to the original pattern, and the stripe contours 
terminate. b-d, Snapshots of the stripe patterns correspond­
ing to a (domains scaled to same size) : b, initial 2-stripe pat­
tern ( t = 500); c, after period-doubling ( t = 3,000) ; and d, after 
rearrangement into 3 stripes (2 + 2 half-stripes, t = 4,000, 
corresponding to the dark region in a) . Simulations: equations 
scaled to the form au;at = s2 f(u)+DV2 u, and solved with a 
standard ADI scheme on a fixed domain (mesh size 0.2, time 
step 0.05) with zero f lux boundary conditions; increase in 
s is equivalent to increase in (domain length)2 , here 
s(t)=Y (0.15+10-1 t2 ). Patterning sequence is sensitive to the 
speed of domain growth and for faster growth rates the t ran­
sitions become less controlled; we found transitions from 2 
stripes to higher modes (5 stripes and more) with subsequent 
rearrangements. 

Our results show that 
regular stripe-doubling 
sensitively depends on the 
artificial geometrical con­
straints of the one-dimen­
sional domain (see figure). 
As the restriction of one­
dimensionality is removed, 
complete spatial rearrange­
ment of the pattern occurs 
on the growing domain, 
which clearly is not seen in 
the fish. This behaviour is 
readily explained by the two 
properties of Turing sys­
tems emphasized above. As 
the domain grows bigger, 
new stripes should be 
added, one at a time, 
approximately conseiving 
the spatial wavelength. 
Initially, the preexisting pat­
tern appears to force a dif­
ferent sequence of stripe 
additions to occur, corre­
sponding to the 'period­
doubling' behaviour some­
times seen in one-dimen­
sional systems3• However, 
this situation turns out to be 
unstable, and the whole 
pattern rearranges perpen­
dicularly to the old one to 
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form a new stripe pattern enlarged by one 
stripe. This behaviour does not depend on 
the aspect ratio of the domain; we have 
found complete perpendicular rearrange­
ment of pattern even on very narrow 
( quasi-one-dimensional) domains. Thus, 
the patterning dynamics must involve an 
interplay of the mechanism that sets the 
distance between adjacent stripes and 
some form of 'memory' that conseives the 
location of old stripes. The 'memory' could 
be provided by pigment cells forming 
stable aggregations4. More specific quanti­
tative models based on experimentally 
implicated mechanisms are needed to for­
mulate testable predictions on the origin 
of the dynamic Pomacanthus skin patterns. 
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KONDO AND ASAI REPLY - With respect 
to Hofer and Maini's first criticism, we 
agree that many pattern-forming systems 
can explain the phenomenon we observed. 
These models have in common a set of 
interactions involving local activation/ 
lateral inhibition coupled with the appro­
priate nonlinearities5• The most important 
message of our report' is that a dynamical 
mechanism like Turing's is viable for the 
fish patterns. It should therefore be possi­
ble to identify the real molecular mech­
anism by experiments. Of course, at 
present the details of the fish-patterning 
mechanism are unknown, and will not be 
understood until experiments are done. 

Second, Hofer and Maini claim that a 
two-dimensional simulation of the P semi­
circulatus pattern is more realistic than 
the one-dimensional simulation in our 
paper. This is by no means clear. All the 
stripe lines of P semicirculatus are perpen­
dicular to the body axis and there are no 
branch points. These features suggest the 
presence of a directional preference 
forcing the stripes to run in the same 
direction. A one-dimensional simulation 
captures some of the character of this 
system better than does an isotropic 
two-dimensional simulation. 
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