Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled growth of microporous crystals nucleated in reverse micelles

Abstract

THE development of new methods for nucleating and growing microporous crystals has made available new framework structures and morphologies for these technologically important materials1. These approaches have included solution-based synthesis2 and the use of simple organic structure-directing agents3 and complex organic assemblies such as liquid-crystal phases4,5. Here we show that the growth of microporous zincophosphate6–8 with the sodalite structure can be controlled by preparing the crystals from reactants included within the interior aqueous phase of reverse micelles dispersed in an organic solvent. The growth of inorganic phases in reverse micelles has been exploited previously for the preparation of monodisperse oxide9, semiconductor10 and metal particles11. In this study, we introduce the two inorganic components—zinc and phosphate ions—in separate micelles, so that crystallization is controlled by the collision and exchange kinetics of the surfactant structures. Moreover, the surfactant–water interface provides the site for crystal nucleation, favouring initial nucleation at the (111) and/or (110) crystal faces and subsequent growth of the zinco-phosphate crystals by deposition along the {100} faces. The growth process is ultimately interrupted by sedimentation when the crystals grow large enough, producing a precipitate of micro-crystals several hundred nanometres in size. Our results indicate that this approach can provide a means of controlling the morphology as well as the size of growing crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davis, M. E. & Lobo, R. F. Chem. Mater. 4, 756–768 (1992).

    Article  CAS  Google Scholar 

  2. Wenqin, P., Ueda, S. & Koizumi, M. in Proc. 7th Int. Zeolite Conf. 177–184 (Kodanasha Elsevier, Tokyo, 1986).

  3. Jacobs, P. A. & Martens, J. A. Synthesis of High-Silica Aluminosilicate Zeolites (Elsevier, Amsterdam, 1987).

    Google Scholar 

  4. Kresge, C. T., Leonwicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Monnier, A. et al. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Gier, T. E. & Stucky, G. D. Nature 349, 508–510 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Nenoff, T. M., Harrison, W. T. A., Gier, T. E. & Stucky, G. D. J. Am. chem. Soc. 113, 378–379 (1991).

    Article  CAS  Google Scholar 

  8. Gier, T. E., Harrison, W. T. A., Nenoff, T. M. & Stucky, G. D. in Synthesis of Microporous Materials Vol. 1 (eds Occelli, M. & Robson, H.) 407–426 (Van Nostrand Reinhold, New York, 1992).

    Google Scholar 

  9. Osseo-Asare, K. & Arriagada, F. J. Colloids Surfaces 50, 321–339 (1990).

    Article  CAS  Google Scholar 

  10. Fendler, J. H. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  11. Wilcoxon, J. P., Williamson, R. L. & Baughman, R. J. chem. Phys. 98, 9933–9950 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Mann, S. & Williams, R. J. P. J. chem. Soc, Dalton Trans. 311–316 (1983).

  13. Pileni, M. P. J. phys. Chem. 97, 6981–6973 (1993).

    Article  Google Scholar 

  14. Kahlweit, M., Strey, R., Busse, G. J. phys. Chem. 94, 3881–3894 (1990).

    Article  CAS  Google Scholar 

  15. Kuneida, H. & Shinoda, K. J. Colloid Interface Sci. 75, 601–606 (1980).

    Article  ADS  Google Scholar 

  16. Fletcher, P. D. I., Howe, A. M. & Robinson, B. H. J. chem. Soc, Faraday Trans. 1 83, 985–1006 (1987).

    Article  CAS  Google Scholar 

  17. Hunter, R. J. Foundations of Colloid Science Vol. 1 49–103 (Clarendon, Oxford, 1993).

    Google Scholar 

  18. Twomey, T. A. M., Mackay, M., Kuipers, H. P. C. E. & Thompson, R. W. Zeolites 14, 162–168 (1994).

    Article  Google Scholar 

  19. Bibby, D. M. & Dale, M. P. Nature 317, 157–158 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Loades, S. D., Carr, S. W., Gay, D. H. & Rohl, A. L. J. chem. Soc., chem. Commun. 1369–1370 (1994).

  21. Hartman, P. & Bennema, P. J. Cryst. Growth 49, 145–156 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Feng, S. & Bein, T. Nature 368, 834–836 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Towey, T. F., Khan-Lodhi, A. & Robinson, B. H. J. chem. Soc., Faraday Trans. 86, 3757–3762 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, P., Jakupca, M., Reddy, K. et al. Controlled growth of microporous crystals nucleated in reverse micelles. Nature 374, 44–46 (1995). https://doi.org/10.1038/374044a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374044a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing