Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production and evolution of light elements in active star-forming regions

Abstract

COLLISIONS between cosmic rays (energetic protons and α-particles) and carbon, nitrogen and oxygen in the interstellar medium have been considered1 to be the main source of lithium, beryllium and boron, through fragmentation of the larger nuclei. But this mechanism is unable to account for the observed Solar System abundances of the isotopes 7Li and 11B. The recent detection of an excess of γ-rays2 in the direction of the star-forming region in the Orion cloud has been interpreted3 as arising from the excitation of carbon and oxygen nuclei ejected from supernovae when they collide with the surrounding gas, which is primarily molecular and atomic hydrogen. Here we investigate the consequences of the two-body interactions of the ejected carbon and oxygen nuclei (and the α-particles ejected with them) with the hydrogen and helium in the surrounding gas, using a model developed previously4–6. We show that these interactions offer a way to make lithium, beryllium and boron that is independent of the abundance of heavy elements in the surrounding medium. Such supernova-driven interactions, combined with the effect of galactic cosmic rays, can explain the observed Solar System abundances of these light elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reeves, H. Rev. mod. Phys. 66, 193–216 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Bloemen, H. et al. Astr. Astrophys. 281, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  3. Bykov, A. & Bloemen, H. Astr. Astrophys. 283, L1–L4 (1994).

    ADS  CAS  Google Scholar 

  4. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. L. Astrophys. J. Suppl. Ser. 40, 487–526 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. L. Space Sci. Rev. 18, 341–388 (1975).

    Article  ADS  Google Scholar 

  6. Murphy, R. J., Hua, X. M., Kozlovsky, B. & Ramaty, R. Astrophys. J. 351, 299–308 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Burrows, D. N., Singh, K. P., Nousek, J. A., Garmire, G. P. & Goog, J. Astrophys. J. 406, 97–111 (1993).

    Article  ADS  Google Scholar 

  8. Weaver, T. M. & Woosley, S. E. Phys. Rep. 227, 65–96 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Woosley, S. E., Langer, N. & Weaver, T. A. Astrophys. J. 411, 823–839 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Brown, A. G. A., de Geus, E. J. & de Zeeuw, P. T. Astr. Astrophys. 289, 101–120 (1994).

    ADS  Google Scholar 

  11. Cunha, K. & Lambert, D. L. Astrophys. J. 426, 170–191 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Read, S. M. & Viola, V. E. Atomic Data and Nuclear Data Tables 31, 359–397 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Blocmen, H. et al. Astr. Astrophys. 139, 37–42 (1984).

    ADS  Google Scholar 

  15. Meneguzzi, M., Audouze, J. & Reeves, H. Astro. Astrophys. 15, 337–359 (1971).

    ADS  CAS  Google Scholar 

  16. Menegussi, M. & Reeves, H. Astr. Astrophys. 40, 99–110 (1975).

    ADS  Google Scholar 

  17. Spite, F. & Spite, M. in Origin and Evolution of the Elements, (eds Prantzos, N. Vangioni-Flam, E. & Cassé, M.) 201–211 (Cambridge Univ. Press, 1993).

    Google Scholar 

  18. Edvardsson, B. et al. Astr. Astrophys. (in the press).

  19. Fields, B. D., Olive, K. A. & Schramm, D. N. Astrophys. J. (in the press).

  20. Kozlovsky, B. & Ramaty, R. Astrophys. J. 191, L43–L44 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. E. Astrophys. J. Lett, (in the press).

  22. Marti, K. & Lingenfelter, R. in Nuclei in the Cosmos (L'Apuila, Italy, in the press).

  23. Vangioni-Flam, E., Cassé, M., Audouze, J. & Oberto, Y. Astrophys. J. 364, 568–572 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Cassé, M., Vangioni-Flam, E., Lehoucq, R. & Oberto, Y. in Nuclei in the Cosmos (L'Aquila, Italy, in the press).

  25. Clayton, D. D. Nature 368, 222–224 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Ryan, S., Norris, I., Bessel, M. & Deliyannis, C. Astrophys. J. 388, 184–189 (1994).

    Article  ADS  Google Scholar 

  27. Gilmore, G., Gustafsson, B., Edvardsson, B. & Nissen, P. E. Nature 357, 379–384 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Duncan, D., Lambert, D. & Lemke, M. Astrophys. J. 401, 584–595 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassé, M., Lehoucq, R. & Vangloni-Flam, E. Production and evolution of light elements in active star-forming regions. Nature 373, 318–319 (1995). https://doi.org/10.1038/373318a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373318a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing