
NEWS AND VIEWS 

The poor quality of random numbers 
After decades in which the army of computer simulators have used machine-generated random numbers with 
confidence, even aplomb, some generating algorithms turn out to be frayed at the edges. 

WHAT exactly is a random number? Many 
senses in which that question may be under
stood evidently make no sense. For exam
ple, it is nonsensical to ask in the abstract 
whether "3" is a random number. For one 
thing, it cannot be described as random 
without specifying the range of numbers 
from which it has been chosen. For another, 
even if it has been chosen by some random 
process (from among, say, the integers be
tween "1" and "10" inclusive), that will be 
entirely irrelevant unless the uses to which 
the number is put are specified. 

In this spirit, one might set out to calcu
late the scattering cross-section of a moving 
billiard ball by another at rest, building a 
simple computer program to simulate the 
typical collision and then assigning trajecto
ries chosen at random to consecutive 
impactors. Then one becomes an important 
user of random numbers. The same result 
can be obtained more easily with a little 
calculus, but not all calculations are that 
amenable to analytical treatment. In any 
case, what matters in such a context is that 
the numbers should be random with respect 
to each other. By now, there are many pro
cedures, known by the generic name of 
Monte Carlo, that follow these lines and 
which are major users of the commodity 
called the random number, which has to be 
manufactured somehow. 

That is not child's play. Here is an ac
count (by Robert M. Ziff, Phys. Rev. Lett. 
69, 2671; 1992) of one technique: 

" ... a total of 6 X 1012 random numbers 
were generated, requiring a few months 
computing time on about a dozen computer 
workstations (Apollo 425, IBM R/S 6000) 
running simultaneously." 

Random numbers made in ways like this 
are not really random, but are the products of 
computational schemes or algorithms. So, 
in the last resort, a set of random numbers 
cannot be entirely free from non-random
ness. Everybody in the trade knows that, and 
tries to arrange that calculations are so de
signed that the non-randomness will not 
embarrassingly become apparent. But that 
seems not always to be possible. 

Indeed, for the past two years there has 
been a zephyr (hardly a gale) of excitement 
that a calculation by Alan M. Ferrenberg, D. 
P. Landau andY. Joanna Wong, from the 
University of Georgia at Athens, appears to 
have produced erroneous results in circum
stances that cast doubt on the quality of the 
random numbers they used (Phys. Rev. Lett. 
69, 3382-3384; 1992). This was at the time 
more than a mere cloud on a blue horizon; 
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some ofthe random-number generators used 
go back for twenty years, and had not previ
ously been found wanting. 

The test system used by F errenberg and 
his colleagues was the familiar Ising lattice, 
a two-dimensional square lattice supposed 
occupied by classical spins pointing in one 
direction or the opposite. The Ising lattice is 
a model for several kinds of critical phenom
ena. The usual procedure is to simulate an 
infinitely large lattice by supposing it to be 
broken into finite rectangles and imposing 
the same boundary conditions at the edges 
of each rectangle making up the whole plane. 

The object of the exercise is to calculate 
the thermodynamic properties of such a 
system, which is a matter of calculating the 
energy of particular configurations of spins 
and, from them, the partition function (a 
function of the temperature). The snag is 
that, except when the lattice is small, the 
enumeration problem is huge. So people 
have fallen back on Monte Carlo methods to 
arrive at the equilibrium state of the system in 
one go. The simple way is to invert a single 
spin, chosen at random, and to calculate the 
effect on the thermodynamic properties of 
flipping the spins of its nearest neighbours, 
their nearest neighbours, and so on. That state 
in which a single flipped spin makes no 
overall difference is the equilibrium state. 

The practical difficulty is that the simu
lation methods become extremely slow near 
the critical temperature at which the lattice 
is transformed from the ordered to the disor
dered state. So Ferrenberg and his colleagues 
were anxious to try a novel method due to 
Ulli Wolff from the University of Kiel, in 
which the approach to equilibrium in an Ising 
lattice involves switching whole clusters of 
spins simultaneously. This was reckoned to 
be much faster, but Ferrenberg found that it 
gave "systematically incorrect results". They 
knew that because the simple two-dimen
sional Ising lattice is exactly calculable. 

Three Finnish workers have now shown 
that the errors found by Ferrenberg and 
colleagues are indeed traceable to the ran
dom numbers used (Vattulainen, I., Ala
Nissila, T. & Kankaala, K. Phys. Rev. Lett. 
73, 2513-2516; 1994). They test their con
clusions with a variety of generators of 
random numbers. An account of the manu
facture of random numbers follows. 

Everything is done by computer, so that 
numbers are most conveniently represented 
as binary digits, preferably as many as there 
are bits in one computer byte. Evidently an 
iterative process, in which one random 
number is generated from others already 

defined, is simplest when there is a need to 
make a lot of them. Suppose that the num
bers each consist of 32 binary bits ("O"s and 
"1"s) and that there are already n of them in 
being, say x

1
, xrx,. Then one could imag

ine forming x,+
1 
by using some simple com

puter operation to combine some specified 
pair of the pre-existing numbers together. 
One of the simplest computer operations is 
the "OR" or "XOR" operator which, operat
ing one bit at a time, turns one 32-bit number 
into another. That is the basis of what is 
called the generalized feedback shift regis
ter (GFSR) generator of random numbers, in 
whichx" =xn./S!x,·q' where @means the OR 
operator and p and q are integers. 

There are more elaborate ways of mak
ing random numbers, but to the extent that 
they all depend on algorithms, they are all 
subject to non-randomness. But it is clear 
that the GFSR method requires at least p or 
q numbers (whichever is the larger), whence 
the benefits of the algorithm x = ( 16807 X 
xn.J)mod(231 -l ), apparently variously known 
as GGL, CONG and RAN3. 

The Finnish group has repeated the 
simulations that caused a stir at the end of 
1992, discovering that discrepancies do in
deed depend on the random-number genera
tor. They have gone on to devise two neat 
physical tests of the randomness of random 
numbers. One, called the "random walker 
test", would have the random numbers make 
a point move between one of the four quad
rants in a square, in the expectation that it 
would occupy each of the four sub-squares 
equally often. In reality, they find that some 
favourite algorithms, especially the GFSR 
generators with the larger of p and q equal to 
31, 250 and 521, as well as RAN3, all fail the 
simple test. 

The other test is even simpler. Suppose 
the random numbers are scaled to fit be
tween 0 and 1, and that they are taken 
together in blocks of n as they come off the 
battery of perpetually running workstations. 
Take the average of each block and assign 
the number 0 if the average is less than 
0.5 and, otherwise, 1. There should be an 
equal number of the two digits, and the 
probability of departures from equality can 
be obtained by simple statistics. Again the 
same random-number generators fail. 

Primarily, all this will be a warning to the 
Monte Carlo community, but others will be 
surprised that the errors have come to light 
so late in the day, and that so little should be 
known of their origin. Perhaps that is some
thing with which to occupy the long Finnish 
winter nights ahead. John Maddox 
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