Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

mRNAs can be stabilized by DEAD-box proteins

Abstract

EUBACTERIAL messenger RNAs are synthesized and translated simultaneously; moreover the speed of ribosomes usually matches that of RNA polymerase1,2. We report here that when in Escherichia coli the host RNA polymerase is replaced by the eightfold faster bacteriophage T7 enzyme for the transcription of the lacZ gene, the β-galactosidase yield per transcript is depressed 100-fold. But the overexpression of DEAD-box proteins3 greatly improves this low yield by stabilizing the corresponding transcripts. More generally, it stabilizes inefficiently translated E. coli mRNAs. Ribosome-free mRNA regions, such as those lying behind the fast T7 enzyme or between successive ribosomes on inefficiently translated transcripts, are often unstable4 and we propose that DEAD-box proteins protect them from endonucleases. These results pinpoint the importance of transcription–translation syn-chronization for mRNA stability, and reveal an undocumented property of DEAD-box RNA helicases. These proteins have been implicated in a variety of processes involving RNA5 but not mRNA stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, O. L., Hamkalo, B. A. & Thomas, C. A. Science 169, 392–395 (1970).

    Article  ADS  Google Scholar 

  2. Jacquet, M. & Kepes, A. J. molec. Biol. 60, 453–472 (1971).

    Article  CAS  Google Scholar 

  3. Linder, P. et al. Nature 337, 121–122 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Petersen, C. in Control of mRNA Stability (eds Brawerman, G. & Belasco, J.) 117–145 (Academic, San Diego, 1993).

    Book  Google Scholar 

  5. Schmid, S. R. & Linder, P. Molec. Microbiol. 6, 283–292 (1992).

    Article  CAS  Google Scholar 

  6. Lopez, P. J., lost, I. & Dreyfus, M. Nucleic Acids Res. 22, 1186–1193 (1994).

    Article  CAS  Google Scholar 

  7. Kalman, M., Murphy, H. & Cashel, M. New Biol. 3, 886–895 (1991).

    CAS  PubMed  Google Scholar 

  8. Toone, W. M., Rudd, K. E. & Friesen, J. D. J. Bact. 173, 3291–3302 (1991).

    Article  CAS  Google Scholar 

  9. Nishi, K., Morel-Deville, F., Hershey, J. W. B., Leighton, T. & Schnier, J. Nature 336, 496–498 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Stueber, D. & Bujard, H. EMBO J. 1, 1399–1404 (1982).

    Article  CAS  Google Scholar 

  11. Iggo, R., Picksley, S., Southgate, J., McPheat, J. & Lane, D. P. Nucleic Acids Res. 18, 5413–5417 (1990).

    Article  CAS  Google Scholar 

  12. Ford, M. J., Anton, I. A. & Lane, D. P. Nature 332, 736–738 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Pause, A., Méthot, N. & Sonenberg, N. Molec. cell. Biol. 13, 6789–6798 (1993).

    Article  CAS  Google Scholar 

  14. Chevrier-Miller, M., Jacques, N., Raibaud, O. & Dreyfus, M. Nucleic Acids Res. 18, 5787–5792 (1990).

    Article  CAS  Google Scholar 

  15. Yarchuk, O., Jacques, N., Guillerez, J. & Dreyfus. M. J. molec. Biol. 226, 581–596 (1992).

    Article  CAS  Google Scholar 

  16. Iost, I., Guillerez, J. & Dreyfus, M. J. Bact. 174, 619–622 (1992).

    Article  CAS  Google Scholar 

  17. Bechhofer, D. H. & Dubnau, D. Proc. natn. Acad. Sci. U.S.A. 84, 498–502 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Nilsson, G., Belasco, J. G., Cohen, S. N. & von Gabain, A. Proc. natn. Acad. Sci. U.S.A. 84, 4890–4894 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Chapon, C. EMBO J. 1, 369–374 (1982).

    Article  CAS  Google Scholar 

  20. Springer, M. et al. J. molec. Biol. 185, 93–104 (1985).

    Article  CAS  Google Scholar 

  21. Putzer, H., Grunberg-Manago, M. & Springer, M. in tRNA: Structure, Biosynthesis and Function (eds Söll, D. & RajBhandary, U. L.) 293–333 (ASM, Washington DC, 1995).

    Book  Google Scholar 

  22. Carpousis, A. J., Van Houwe, G., Ehretsmann, C. & Krisch, H. M. Cell 76, 889–900 (1994).

    Article  CAS  Google Scholar 

  23. Cormack, R. S. & Mackie, G. A. J. molec. Biol. 228, 1078–1090 (1992).

    Article  CAS  Google Scholar 

  24. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 82, 1074–1078 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Studier, F. W. & Moffatt, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  26. Plumbridge, J. A. & Springer, M. J. molec. Biol. 167, 227–243 (1983).

    Article  CAS  Google Scholar 

  27. Macdonald, L. E., Zhou, Y. & McAllister, W. T. J. molec. Biol. 232, 1030–1047 (1993).

    Article  CAS  Google Scholar 

  28. Lesage, P. et al. J. molec. Biol. 228, 366–386 (1992).

    Article  CAS  Google Scholar 

  29. Yarchuk, O., Iost, I. & Dreyfus, M. Biochimie 73, 1533–1541 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

lost, I., Dreyfus, M. mRNAs can be stabilized by DEAD-box proteins. Nature 372, 193–196 (1994). https://doi.org/10.1038/372193a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372193a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing