Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of the thermohaline circulation in the abrupt warming after Heinrich events

Abstract

EVIDENCE of rapid climate oscillations during the last glacial period has been identified in climate records from Greenland ice cores1,2 and ocean sediments in the North Atlantic3,4. These records show that periods of gradual cooling are terminated by abrupt warming events5, with the coldest periods coinciding with the deposition of ice-rafted debris (so-called Heinrich events) throughout the North Atlantic. Heinrich events are thought to be a signature of massive iceberg discharges owing to collapse of the Laurentide ice sheet; Bond et al.5 have proposed that the decrease in meltwater flux following collapse and retreat of the ice sheet enhanced the ocean's thermohaline circulation6, thereby increasing advection of heat from the tropics and giving rise to abrupt climate warming. Here we test this idea using a simple ocean model coupled to a model of a periodically surging ice sheet. We find that massive discharges of icebergs first stop the thermohaline circulation because of the consequent freshwater influx, cooling the North Atlantic region. This is followed by a rapid restart of the circulation, leading to abrupt warming. Thus our model can reproduce the qualitative features of the climate oscillations seen in the ice-core and ocean records.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnsen, S. J. et al. Nature 359, 311–312 (1992).

    Article  ADS  Google Scholar 

  2. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  3. Heinrich, H. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  4. Bond, G. et al. Nature 360, 245–249 (1992).

    Article  ADS  Google Scholar 

  5. Bond, G. et al. Nature 365, 143–147 (1993).

    Article  ADS  Google Scholar 

  6. Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. Paleoceanography 5, 469–477 (1990).

    Article  ADS  Google Scholar 

  7. GRIP project members Nature 364, 203–207 (1993).

  8. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Jouzel, J. et al. Nature 329, 402–408 (1987).

    Article  ADS  Google Scholar 

  10. Grousset, F. E. et al. Paleoceanography 8, 175–192 (1993).

    Article  ADS  Google Scholar 

  11. Guiot, J. et al. Palaeogeogr. Palaeoclimatol. Palaeoecol. 103, 73–93 (1993).

    Article  Google Scholar 

  12. Berger, A. L. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  13. Oerlemans, J. Nature 364, 783–786 (1993).

    Article  ADS  Google Scholar 

  14. Oerlemans, J. Tellus 35A, 81–87 (1983).

    Article  ADS  Google Scholar 

  15. MacAyeal, D. R. Paleoceanography 8, 767–773 (1993).

    Article  ADS  Google Scholar 

  16. MacAyeal, D. R. Paleoceanography 8, 775–784 (1993).

    Article  ADS  Google Scholar 

  17. Birchfield, E. Clim. Dyn. 4, 57–71 (1989).

    Article  Google Scholar 

  18. Manabe, S. & Stouffer, F. J. Nature 364, 215–218 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Birchfield, E. G. & Broecker, W. S. Paleoceanography 5, 835–843 (1990).

    Article  ADS  Google Scholar 

  20. Manabe, S. & Broccoli, A. J. geophys. Res. 90, 2167–2190 (1985).

    Article  ADS  Google Scholar 

  21. Labeyrie, L. D. et al. Quat. Sci. Rev. 11, 401–413 (1992).

    Article  ADS  Google Scholar 

  22. Wang, H., Birchfield, E. & Rich, J. in Ice In the Climate System (ed. Peltier, R.) 237–254 (NATO ASI Ser. I12, Springer, Berlin, 1993).

    Book  Google Scholar 

  23. Birchfield, E., Wang, H. & Rich, J. J. geophys. Res. 99, 12459–12470 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paillard, D., Labeyriet, L. Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature 372, 162–164 (1994). https://doi.org/10.1038/372162a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372162a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing