Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluid trapping in mid-crustal reservoirs by H2O–CO2 mixtures

Abstract

A THIN reservoir of free aqueous or carbonic fluids at mid-crustal levels, perhaps in the form of water sills1, has been suggested as the source of fault-transmitted metasomatizing fluids2–4, as the cause of observed deep crustal electrical conductivity and anomalous seismic reflectivity5, and as a lubricated potential detachment zone for thin-skin tectonics6. A problem with this hypothesis is that estimated crustal permeabilities are too high to permit long-term retention of such fluids7,8. Most mechanisms suggested for achieving the required permeability reduction rely on maintaining unusually low porosity 2,6,9,10. Because porosity creation, by tectonic deformation, fluid release or infiltration, is a ubiquitous process, permeability reductions achieved by these mechanisms are hard to sustain for long periods of time. A sealing (permeability reduction) mechanism that can operate in the presence of significant porosity is required. Here I propose that the required mechanism is capillary sealing by immiscible CO2-H2O mixtures derived from rising volatiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fyfe, W. S., Price, N. J. & Thomson, A. B. Fluids in the Earth's crust (Developments in Geochemistry Vol. 1, Elsevier, New York, 1978).

    Google Scholar 

  2. Etheridge, M. A., Wall, V. J., Cox, S. F. & Vernon, R. H. J. geophys. Res. 89, 4344–4358 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Sibson, R. H. Geology 15, 701–704 (1987).

    Article  ADS  Google Scholar 

  4. Rice, J. R. in Fault Mechanics and Transport Properties of Rocks (eds. Evans, B & Wong, T.-F. 475–503 (Academic, New York, 1992).

    Google Scholar 

  5. Jones, A. G. Geophys. J. 89, 7–18 (1987).

    Article  ADS  Google Scholar 

  6. Bailey, R. C., Geophys. Res. Lett. 17, 1129–1132 (1990).

    Article  ADS  Google Scholar 

  7. Brace, W. F. Int. J. Rock Mech. Miner. Sci. Geomech. Abstr. 17, 241–251 (1980).

    Article  Google Scholar 

  8. Hyndman, R. D. & Shearer, P. M. Geophys. J. Int. 98, 343–365 (1989).

    Article  ADS  Google Scholar 

  9. Walder, J. & Nur, A. J. geophys. Res. 89, 11539–11548 (1984).

    Article  ADS  Google Scholar 

  10. Marquis, G. & Hyndman, R. D. Geophys. J. Int. 110, 91–105 (1992).

    Article  ADS  Google Scholar 

  11. Thomson, A. B. Nature 358, 295–302 (1992).

    Article  ADS  Google Scholar 

  12. Sibson, R. H., J. struct. Geol. 11, 873–877 (1989).

    Article  ADS  Google Scholar 

  13. Fyfe, W. S. in Saline Water and Gases in Crystalline Rocks (eds Fritz, P. & Frape, S. K.) 1–3 (Spec. Pap. No. 33, Geol. Ass. Canada, Ottawa, 1987).

    Google Scholar 

  14. Yardley, B. W. D. Nature 323, 111 (1986).

    Article  ADS  Google Scholar 

  15. Thompson, A. B. & Connolly, J. A. D. Tectonophysics 182, 47–55 (1990).

    Article  ADS  Google Scholar 

  16. Secor, D. T. & Pollard, D. D. Geophys. Res. Lett. 2, 510–513 (1975).

    Article  ADS  Google Scholar 

  17. Yardley, B. W. D. & Bottrell, S. H. Geophys. 16, 199–202 (1988).

    CAS  Google Scholar 

  18. Frantz, J. D., Popp, R. K. & Hoering, T. C. Chem. Geol. 98, 237–255 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Zhang, Y. G. & Frantz, J. D. Chem. Geol. 74, 289–308 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Bowers, T. S. & Helgeson, H. C. Geochim. cosmochim. Acta 47, 1247–1275 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Johnson, E. L. Geology 19, 925–928 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Frape, S. K. & Fritz, P. in Saline Water and Gases in Crystalline Rocks (eds Fritz, P. & Frape, S. K.) 19–37 (Spec. Pap. No. 33, Geol. Ass. Canada, Ottawa, 1987).

    Google Scholar 

  23. Stegemeier, G. L. in Improved Oil Recovery by Surfactant and Polymer Flooding (eds Shah, D. O. & Schechter, R. S.) 55–91 (Academic, New York, 1977).

    Book  Google Scholar 

  24. Dullien, F. A. L., Lai, F. S. Y. & MacDonald, I. F. J. Colloid Interface Sci. 109, 201–218 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Katz, A. J. & Trugman, S. A. J. Colloid Interface Sci. 123, 8–13 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Nassau, K. & Schonhorn, H. Gems Gemol. 15, 354–360 (1978).

    Google Scholar 

  27. Watson, E. B. & Brenan, J. M. Earth planet. Sci. Lett. 85, 497–515 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Adamson, A. W. Physical Chemistry of Surfaces 70 (Interscience, New York, 1960).

    Google Scholar 

  29. Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon, Oxford, 1982).

    Google Scholar 

  30. Brace, W. F., Walsh, J. B. & Frangos, W. T. J. geophys. Res. 73, 2225–2236 (1968).

    Article  ADS  Google Scholar 

  31. Mohanty, K. K., Davis, H. T. & Scriven L. E. in Proc. Soc. Petrol. Engrs 55th A. Conf. (Publ. No. 9406, Soc. Petrol Engrs, Dallas, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, R. Fluid trapping in mid-crustal reservoirs by H2O–CO2 mixtures. Nature 371, 238–240 (1994). https://doi.org/10.1038/371238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371238a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing