Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of ridge-axis morphology on magma supply and spreading rate

Abstract

WHY do some mid-ocean-ridge axes have as their topographic expression a median valley 1–2 km deep and 15–30 km wide, whereas others have an axial high 100–200 m high and 1–2 km wide? In general, median valleys exist at the axes of ridges spreading at half-rates less than 20-25 mm yr−1, whereas axial highs are found at faster-spreading ridges1,2. A recent crustal genesis model3, incorporating hydrothermal cooling and crustal accretion by means of a magma lens, agrees well with observations of the spreading-rate dependence of axial morphology1,2, the depth of the axial magma chamber3,4 and the thickness of the ridge-axis lithosphere5,6. But there are several notable exceptions to the correlation between spreading rate and axial morphology, such as the Reykjanes Ridge, which spreads at l0mm yr−1 but has an axial high. Here we show that by extending the model of ref. 3 to include variations in crustal thickness, we can explain the observed dependence of axial morphology on crustal thickness and spreading rate. Our results suggest that the ultimate control on axial morphology is the thermal structure at the ridge axis, which is a function of both spreading rate and magma supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Macdonald, K. C. in The Geology of North America: The Western North Atlantic Region (eds Vogt, P. & Tucholke, B.) 51–68 (Geol. Soc. Am., Boulder, 1986).

    Google Scholar 

  2. Small, C. & Sandwell, D. T. J. geophys. Res. 94, 17383–17392 (1989).

    Article  ADS  Google Scholar 

  3. Phipps Morgan, J. & Chen, Y. J. J. geophys. Res. 98, 6283–6298 (1993).

    Article  ADS  Google Scholar 

  4. Purdy, G. M., Kong, L. S. L., Christeson, G. L. & Solomon, S. Nature 355, 815–817 (1992).

    Article  ADS  Google Scholar 

  5. Toomey, D. R., Solomon, S. C. & Purdy, G. M. J. geophys. Res. 93, 9093–9112 (1988).

    Article  ADS  Google Scholar 

  6. Kong, L. S. L., Solomon, S. C. & Purdy, G. M. J. geophys. Res. 97, 1659–1685 (1992).

    Article  ADS  Google Scholar 

  7. Sleep, N. H. J. geophys. Res. 80, 4037–4042 (1975).

    Article  ADS  Google Scholar 

  8. Sinton, J. M. & Detrick, R. S. J. geophys. Res. 97, 197–216 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Quick, J. E. & Denlinger, R. P. J. geophys. Res. (in the press).

  10. Henstock, T. J., Woods, A. W. & White, R. S. J. geophys. Res. 98, 4143–4162 (1993).

    Article  ADS  Google Scholar 

  11. Sparks, D. W. & Parmentier, E. M. Earth planet. Sci. Lett. 105, 368–377 (1991).

    Article  ADS  Google Scholar 

  12. Harding, A. J. et al. J. geophys. Res. 94, 12163–12196 (1989).

    Article  ADS  Google Scholar 

  13. Kent, G. M., Harding, A. J. & Orcutt, J. A. Nature 344, 650–653 (1990).

    Article  ADS  Google Scholar 

  14. Vera, E. E. et al. J. geophys. Res. 95, 15529–15556 (1990).

    Article  ADS  Google Scholar 

  15. Caress, D. W., Burnett, M. S. & Orcutt, J. A. J. geophys. Res. 97, 9243–9264 (1992).

    Article  ADS  Google Scholar 

  16. Gregory, R. & Taylor, H. P. J. geophys. Res. 86, 2737–2755 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Nehlig, P. & Juteau, T. Tectonophys. 151, 199–221 (1988).

    Article  CAS  Google Scholar 

  18. Hooft, E. E. & Detriok, R. S. Geophys. Res. Lett. 20, 423–426 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Phipps Morgan, J., Parmentier, E. M. & Lin, J. J. geophys. Res. 92, 12823–12836 (1987).

    Article  ADS  Google Scholar 

  20. Chen, Y. & Morgan, W. J. J. geophys. Res. 95, 17583–17604 (1990).

    Article  ADS  Google Scholar 

  21. Chen, Y. J. Geophys. Res. Lett. 19, 753–756 (1992).

    Article  ADS  Google Scholar 

  22. Bunch, A. W. H. & Kennett, B. L. N. Geophys. J. R. astr. Soc. 61, 41–166 (1980).

    Article  Google Scholar 

  23. Tolstoy, M., Harding, A. J. & Orcutt, J. A. EOS 73, 495 (1992).

    Google Scholar 

  24. Detrick, R. S. & Needham, H. D. EOS 73, 569 (1992).

    Google Scholar 

  25. Phipps Morgan, J. Rev. Geophys. US National Report to IUGG Supplement, 807–822 (1991).

    Google Scholar 

  26. Lin, J. & Phipps Morgan, J. Geophys. Res. Lett. 19, 13–16 (1992).

    Article  ADS  Google Scholar 

  27. Klein, E. M. & Langmuir, C. H. J. geophys. Res. 92, 8089–8115 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Huang, P. Y. & Solomon, S. C. J. geophys. Res. 93, 13445–13477 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phipps Morgan, J., Chen, Y. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706–708 (1993). https://doi.org/10.1038/364706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing