Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Storage of light energy by photoelectron transfer across a sensitized zeolite–solution interface

Abstract

A COMMON strategy for storage of solar energy involves the photoexcitation of a donor molecule D followed by electron transfer to an acceptor A. To exploit this strategy in a practical context, a way must be found to impede the back-reaction in which the electron is transferred from A to D (ref. 1). Previous attempts to achieve long-lived charge separation have involved the use of D–A combinations held in well defined geometries by spacer groups2,3 or immobilized on supports such as porous media4–12. Immobilization of the redox species poses problems, however, for their subsequent separation in order to reclaim the stored energy. Here we report a system that achieves efficient D–A electron transfer, a slow back-reaction and easy separation of the products. We trap the photosensitizer donor, trisbipyridine ruthenium(II), in the supercages of zeolite Y, and use as the acceptor a neutral, zwitter-ionic viologen in the surrounding solution. Electron transfer from the ruthenium centre to the viologen is mediated by N,N′-tetramethylene-2,2′-bipyridinium ions loaded into the zeolite by ion exchange. Isolation of the donor within the zeolite from the acceptor in the solution outside makes the photochemically generated products easily accessible. Practical utilization of this trimolecular redox assembly will, however, require improvement of the quantum yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sutin, N. & Creutz, C. Pure appl. Chem. 52, 2717–2738 (1980).

    Article  CAS  Google Scholar 

  2. Gust, D. & Moore, T. A. Science 244, 35–41 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Gaines, G. L. III, O'Neill, M. P., Svec, W. A., Niemczyk, M. L. & Wasielewski, M. R. J. Am. chem. Soc. 113, 719–721 (1991).

    Article  CAS  Google Scholar 

  4. Photochemistry in Organized and Constrained Media (ed. Ramamurthy, V.) (VCH, New York, 1991).

  5. Kalyanasundaram, K. Photochemistry in Microheterogeneous Systems, (Academic, New York, 1987).

    Google Scholar 

  6. Fujihira, M. & Sakomura, M. Thin Solid Films 179, 471–476 (1989).

    Article  ADS  CAS  Google Scholar 

  7. O'Regan, B. & Gratzel, M. Nature, 353, 737–740 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hurst, J. K. & Thompson, H. P. J. Membr Sci. 28, 3 (1986).

    Article  CAS  Google Scholar 

  9. Sassoon, R. E., Gershuni, S. & Rabani, J. J. phys. Chem. 96, 4692–4698 (1992).

    Article  CAS  Google Scholar 

  10. Willner, J., Yang, J., Loane, C., Otvos, J. W. & Calvin, M. J. phys. Chem. 85, 3277–3282 (1981).

    Article  CAS  Google Scholar 

  11. Krueger, J. S., Mayer, J. E. & Mallouk, T. E. J. Am. chem. Soc. 110, 8232–8234 (1988).

    Article  CAS  Google Scholar 

  12. Slama-Schwork, A., Ottolenghi, M. & Avnir, D. Nature 355, 240–242 (1992).

    Article  ADS  Google Scholar 

  13. Juris, A. et al. Coord. Chem. Rev. 84, 85–277 (1988).

    Article  CAS  Google Scholar 

  14. Degani, Y. & Willner, I. J. Am. chem. Soc. 105, 6228–6233 (1983).

    Article  CAS  Google Scholar 

  15. Willner, I., Ayalon, A. & Rabinovitz, M. Nuov. J. Chem. 14, 685–688 (1990).

    CAS  Google Scholar 

  16. Breck, D. W. Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  17. Quayle, W. H. & Lunsford, J. H. Inorg. Chem. 21, 97–103 (1982).

    Article  CAS  Google Scholar 

  18. Incavo, J. A. & Dutta, P. K. J. phys. Chem. 94, 3075–3081 (1990).

    Article  CAS  Google Scholar 

  19. Dutta, P. K. & Incavo, J. A. J. phys. Chem. 91, 4443–4446 (1987).

    Article  CAS  Google Scholar 

  20. Iler, R. K. The Chemistry of Silica 356, 409 (Wiley, New York, 1979).

    Google Scholar 

  21. Dutta, P. K. & Turbeville, W. J. phys. Chem. 96, 9410–9416 (1992).

    Article  CAS  Google Scholar 

  22. Wokzczak, M. & Stradowski, Cz. Radiat Phys. Chem. 26, 625–633 (1985).

    ADS  Google Scholar 

  23. Persaud, L. et al. J. Am. chem. Soc. 109, 7309–7314 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borja, M., Dutta, P. Storage of light energy by photoelectron transfer across a sensitized zeolite–solution interface. Nature 362, 43–45 (1993). https://doi.org/10.1038/362043a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362043a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing