Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core

Abstract

BUBBLES of ancient air in polar ice cores have revealed that the atmospheric concentration of CO2 during the Last Glacial Maximum was 180–200 p.p.m.v., substantially lower than the pre-industrial value of about 280 p.p.m.v. (refs 1, 2). It is generally thought that this reduction in atmospheric CO2 during glacial time was driven by oceanic processes. The most likely explanations invoke either a decrease in dissolved CO2 in surface waters because of a more efficient 'biological pump' transporting carbon to deep waters, or a higher alkalinity in the glacial ocean as a consequence of changes in carbonate dissolution or sedimentation3. Because isotope fractionation during photosynthesis depletes 13C in the organic matter produced, changes in the biological pump would alter the carbon isotope composition of atmospheric CO2, whereas changes in alkalinity would in themselves have no such effect. Here we report measurements of the carbon isotope content of CO2 in ice cores from Byrd Station, Antarctica, in an attempt to distinguish between these mechanisms. We find that during the ice age the reduced isotope ratio δ13C was more negative than pre-industrial values by 0.3 ±0.2%,. Although this result does not allow us to discriminate definitely between the two possible causes of lower glacial atmospheric CO2. it does indicate that changes in the strength of the biological pump cannot alone have been responsible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, E. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  2. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 325, 408–414 (1987).

    Article  ADS  Google Scholar 

  3. Broecker, W. S. & Peng, T.-H. in NATO Volume on The Global Carbon Cycle (ed. Heimann, M.) (in the press).

  4. Knox, F. & McElroy, M. B. J. geophys. Res. 89, 4629–4637 (1985).

    Article  ADS  Google Scholar 

  5. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Siegenthaler, U. & Wenk, T. Nature 308, 624–625 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Toggweiler, J. R. & Sarmiento, J. L. in Geophysical Monograph 32 (eds Sundquist, E. & Broecker, W. S.) 153–184 (American Geophysical Union, 1985).

    Google Scholar 

  8. Wenk, T. & Siegenthaler, U. in Geophysical Monograph 32 (eds Sundquist, E. & Broecker, W. S.) 185–194 (Americal Geophysical Union, 1985).

    Google Scholar 

  9. Boyle, E. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  10. Broecker, W. S. & Peng, T.-H. Global biogeochem. Cycles 3, 215–239 (1989).

    Article  ADS  Google Scholar 

  11. Ueda, H. T. & Garfield, D. US Army Corps of Engineers, Tech. Rep. 231 (Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1969).

    Google Scholar 

  12. Friedli, H., Moor, E., Oeschger, H., Siegenthaler, U. & Stauffer, B. Geophys. Res. Lett. 11, 1145–1148 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Nature 324, 237–238 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Friedli, H. & Siegenthaler, U. Tellus B40, 129–133 (1988).

    Article  Google Scholar 

  15. Schwander, J. in The Environmental Records in Glaciers and Ice Sheets (eds Oeschger, H. & Langway, C. C.) 53–68 (Wiley, Chichester, 1989).

    Google Scholar 

  16. Craig, H., Horibe, Y. & Sowers, T. Science 2, 1674–1678 (1988).

    Google Scholar 

  17. Staffelbach, T., Stauffer, B., Sigg, A. & Oeschger, H. Tellus B43, 91–96 (1991).

    Article  Google Scholar 

  18. Shoji, H. & Langway, C. C. Jr in Geophysical Monograph 33 (eds Langway, C. C. et al.) 39–48 (Americal Geophysical Union, 1985).

    Google Scholar 

  19. Sarnthein, M. & Winn, K. in Climate-Ocean Interaction (ed. Schlesinger, M.) 319–342 (Kluwer, Boston, Massachusetts, 1990).

    Book  Google Scholar 

  20. Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Nature 357, 461–466 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Duplessy, J. C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  22. Jasper, J. P. & Hayes, J. M. Nature 347, 462–464 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Rau, G. H., Froelich, P. N., Takahashi, T. & Des Marais, D. J. Paleoceanography 6, 335–347 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Sarnthein, M., Winn, K., Duplessy, J. C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).

    Article  ADS  Google Scholar 

  25. Shackleton, N. J., Hall, M. A., Line, J. & Cang, S. Nature 306, 319–322 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Keir, R. S. Paleoceanography 3, 413–445 (1988); 5, 253–276 (1990).

    Article  ADS  Google Scholar 

  27. Heinze, C., Maier-Reimer, E. & Winn, K. Paleoceanography 6, 395–430 (1991).

    Article  ADS  Google Scholar 

  28. Labeyrie, L. & Duplessy, J. C. Palaeogeogr. Palaeoclimatol. Palaeoecol. 50, 217–240 (1985).

    CAS  Google Scholar 

  29. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer, Boston, Massachusetts, 1990).

    Book  Google Scholar 

  30. Mortlock, R. A. et al. Nature 351, 220–223 (1991).

    Article  ADS  Google Scholar 

  31. Siegenthaler, U. et al. Ann. Glaciol. 10, 151–156 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Langway, C. C. & Osada, K. Proc. Symp. Tropospheric Chemistry of the Antarctic Region (Univ. of Colorado, Boulder, 1991).

    Google Scholar 

  33. Johnson, S., Dansgaard, W., Clausen, H. B. & Langway, C. C. Nature 235, 429–434 (1972).

    Article  ADS  Google Scholar 

  34. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Nature 348, 711–714 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Mook, W. G. Neth. J. Sea Res. 20, 211–223 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuenberger, M., Siegenthaler, U. & Langway, C. Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357, 488–490 (1992). https://doi.org/10.1038/357488a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357488a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing