Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Erosion of a stable density gradient by sedimentation-driven convection

Abstract

STABLE density gradients are common in the world's oceans and lakes, and play a crucial part in their physical, chemical and biological evolution. It has recently been suggested1 that turbidity currents provide an indirect mechanism for eroding this stratification. In these currents, light ambient fluid that has been mixed by cyclones with dense suspended sediment is transported to greater depths, where it convectively erodes the gradient as the sediment settles. Here I present experimental results which show that in these circumstances the density gradient is eroded in a number of cycles of decreasing intensity and increasing duration. In each cycle some of the sediment settles to the base of a stagnant region of unimpeded sedimentation, while the rest is mixed into an overlying region that is vigorously convecting. My experimental observations agree with a simple physical model that predicts the rate and extent of vertical mixing as well as the variation of particle sizes in the resulting turbidite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Quadfasel, D., Kudrass, H. & Frische, A. Nature 348, 320–322 (1990).

    Article  ADS  Google Scholar 

  2. Oster, G. & Yamamoto, M. Chem. Rev. 63, 257–268 (1963).

    Article  CAS  Google Scholar 

  3. Oster, G. Scient. Am. 213, 70–76 (1965).

    Article  Google Scholar 

  4. Huppert, H. E., Kerr, R. C., Lister, J. L. & Turner, J. S. J. Fluid Mech. 226, 349–369 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Davis, R. H. & Birdsell, K. H. AlChE J. 34, 123–129 (1988).

    Article  CAS  Google Scholar 

  6. Simpson, J. E. Gravity Currents in the Environment and the Laboratory (Ellis Horwood, Chichester, 1987).

    Google Scholar 

  7. Inman, D. L., Nordstrom, C. E. & Flick, R. E. Ann. Rev. Fluid Mech. 8, 275–310 (1976).

    Article  ADS  Google Scholar 

  8. Parker, G., Fukushima, Y. & Pantin, H. M. J. Fluid Mech. 171, 145–181 (1986).

    Article  ADS  Google Scholar 

  9. Gould, H. R. in Comprehensive Survey of Sedimentation in Lake Mead. 1948–1949. Prof. Pap. US geol. Surv. 295, 201–207 (1960).

  10. Gilbert, R. Can J. Earth Sci. 12, 1697–1711 (1975).

    Article  ADS  Google Scholar 

  11. Gustavson, T. C. J. Sedim. Petrol. 45, 450–461 (1975).

    Google Scholar 

  12. Gibbs, R. J. J. Sedim. Petrol. 53, 1193–1203 (1983).

    CAS  Google Scholar 

  13. Stow, D. A. V. & Piper, D. J. W. Fine-Grained Sediments: Deep Water Processes and Facies (Blackwell, Oxford, 1984).

    Google Scholar 

  14. van Leussen, W. in Physical Processes in Estuaries, 347–403 (eds Dronkers, J. & van Leussen, W.) (Springer, Berlin, 1988).

    Book  Google Scholar 

  15. Carey, S. N., Sigurdsson, H. & Sparks, R. S. J. J. geophys. Res. 93, 15314–15328 (1988).

    Article  ADS  Google Scholar 

  16. Koyaguchi, T., Hallworth, M. A., Huppert, H. E. & Sparks, R. S. J. Nature 343, 447–450 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Deardorff, J. W., Willis, G. E. & Lilly, D. K. J. Fluid Mech. 35, 7–31 (1969).

    Article  ADS  Google Scholar 

  18. Deardorff, J. W., Willis, G. E. & Stockton, B. H. J. Fluid Mech. 100, 41–64 (1980).

    Article  ADS  Google Scholar 

  19. Turner, J. S. Buoyancy Effects in Fluids (Cambridge University Press, 1973).

    Book  Google Scholar 

  20. Green, T. Sedimentology 34, 319–331 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, R. Erosion of a stable density gradient by sedimentation-driven convection. Nature 353, 423–425 (1991). https://doi.org/10.1038/353423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353423a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing