Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical transitions in diamond at ultrahigh pressures

Abstract

MANY technological and scientific applications of diamond arise from its unique properties, which include optical transparency in the ultraviolet to infrared, electrical insulation, thermodynamic stability, and unsurpassed strength and hardness1. Here we describe optical studies on diamond at ultrahigh pressures (to above 300 GPa) which show that these properties are affected by such stresses. Our spectroscopic measurements show that the optical absorption edge shifts from ultraviolet to red with increasing pressures, and Raman scattering measurements show evidence for new structural transitions, associated with large macroscopic deformation, beginning at a pressure of approximately 150 GPa. The changes are reversible and are associated with intense luminescence peaks at 2.0–2.2 eV under 458–514-nm radiation. Our results may be related to the onset of band-gap closure in the approach to a new high-pressure phase. These spectral features must also be taken into account when diamond is used as optical windows for ultrahigh-pressure investigations2–5.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Davies, G. Diamond (Hilger, Bristol, 1984).

    Google Scholar 

  2. Jayaraman, A. Rev. mod. Phys. 55, 65–108 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Seal, M. High Temp.-High Pressures 16, 573–579 (1984).

    CAS  Google Scholar 

  4. Mao, H. K. in Simple Molecular Systems at Very High Densities (eds Polian, A., Loubeyre, P. & Bocarra, N.) 221–236 (Plenum, New York, 1989).

    Google Scholar 

  5. Jeanloz, R. Ann. Rev. phys. Chem. 40, 237–259 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Yin, M. T. & Cohen, M. Phys. Rev. Lett. 50, 2006–2009 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Yin, M. T. Phys. Rev. B30, 1773–1776 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Biswas, R. Martin, R. M., Needs, R. J. & Nielsen, O. H. Phys. Rev. B30, 3210–3213 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Nielsen, O. H. Phys. Rev. B34, 5808–5819 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M. & Devries, R. C. J. appl. Phys. 50, 1002–1009 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Adams D. M. & Sharma, S. K. J. Phys. E: Sci. Instrum. 10, 680–682 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Hemley, R. J., Bell, P. M. & Mao, H. K. Science 237, 605–612 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Sharma, S. K., Mao, H. K., Bell, P. M. & Xu, J. A. J. Raman Spectrosc. 16, 350–352 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Hanfland, M., Syassen, K., Fahy, S., Louie, S. G. & Cohen, M. L. Phys. Rev. B31, 6896–6899 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Boppart, H., van Straaten, J. & Silvera, I. F. Phys. Rev. B32, 1423–1425 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Goncharov, A. F., Makarenko, I. F. & Stishov, S. M. JETP Lett. 41, 184–187 (1985).

    ADS  Google Scholar 

  17. Knight, D. S. & White, W. B. J. Mater. Res. 4, 385–393 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Mao, H. K., Wu, Y., Hemley, R. J., Chen, L. C., Shu, J. & Finger, L. W. Science 246, 649–651 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Orlov, Y. L. The Mineralogy of Diamond (Wiley, New York, 1977).

    Google Scholar 

  20. Goettal, K. A., Mao, H. K. & Bell, P. M. Rev. Sci. Instrum. 56, 1420–1427 (1985).

    Article  ADS  Google Scholar 

  21. Hemley, R. J. & Mao, H. K. Ann. Report Director Geophys. Lab. 1988–1989, 105–108 (1989).

  22. Vohra, Y. Xia, H., Luo, H. & Ruoff, A. F. Appl. Phys. Lett 57, 1007–1009 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Davies, G. & Hamer, M. F. Proc. R. Soc. Lond. A348, 285–298 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Dolling, G. & Cowley, R. A. Proc. Phys. Soc. (Lond.) 88, 463–494 (1966).

    Article  ADS  CAS  Google Scholar 

  25. Hemley, R. J. & Mao, H. K. Phys. Rev. Lett. 61, 857–860 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Mao, H. K. & Hemley, R. J. Science 244, 1462–1465 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, H., Hemley, R. Optical transitions in diamond at ultrahigh pressures. Nature 351, 721–724 (1991). https://doi.org/10.1038/351721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351721a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing