Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A search for the most stable folds of protein chains

Abstract

IT is generally believed that it is not sensible to search for a thermodynamically stable structure of a protein1,2 because neither a molecule nor a computer can look through all the 3100 possible (for 100 residues) chain conformations. Here we show that the use of a molecular field theory for the long-range interactions, the use of one-dimensional statistical mechanics for the short-range ones and the discovery that there are3,4 and there must be5,6 only a small discrete set of folding patterns, make it possible to examine all the variety of 'potentially stable' structures. The general approach and its application is demonstrated here by calculation of stable folds for some β domains. The most stable of these folds correspond to the observed structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levinthal, C. J. chim. Phys. chim. Biol. 65, 44–45 (1968).

    Article  ADS  Google Scholar 

  2. Creighton, T. E. Proteins (Freeman, New York, 1984).

    Google Scholar 

  3. Levitt, M. & Chothia, C. Nature 261, 552–557 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Richardson, J. S. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  5. Finkelstein, A. V. & Ptitsyn, O. B. Prog. Biophys. molec. Biol. 50, 171–190 (1987).

    Article  CAS  Google Scholar 

  6. Murzin, A. G. & Finkelstein, A. V. J. molec. Biol. 204, 749–770 (1988).

    Article  CAS  Google Scholar 

  7. Zimm, B. H. & Bragg, K. J. J. chem. Phys. 31, 526–535 (1959).

    Article  ADS  CAS  Google Scholar 

  8. Vedenov, A. A., Dykhne, A. M., Frank-Kamenetskii, A. D. & Frank-Kamenetskii, M. D. Molec. Biol. (USSR) 1, 313–318 (1967).

    CAS  Google Scholar 

  9. Finkelstein, A. V. Biopolymers 16, 525–529 (1977).

    Article  CAS  Google Scholar 

  10. Lifshitz, I. M., Grosberg, A. Yu. & Khokhlov, A. R. Rev. mod Phys. 50, 683–713 (1979).

    Article  ADS  Google Scholar 

  11. Kubo, R. Statistical Mechanics (North-Holland, Amsterdam, 1965).

    MATH  Google Scholar 

  12. Binder, K. & Young, A. P. Rev. mod. Phys. 58, 801–976 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Bryngelson, J. B. & Wolynes, P. G. Proc. natn. Acad. Sci. U.S.A. 84, 7524–7528 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Shakhnovich, E. I. & Finkelstein, A. V. Biopolymers 28, 1667–1680 (1989).

    Article  CAS  Google Scholar 

  15. Shakhnovich, E. I. & Gutin, A. M. J. Phys. A 22, 1647–1659 (1989).

    ADS  CAS  Google Scholar 

  16. Shakhnovich, E. I. & Gutin, A. M. Studia Biophys. 132, 47–56 (1989).

    CAS  Google Scholar 

  17. Friedrichs, M. & Wolynes, P. G. Science 246, 371–373 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Sasai, M. & Wolynes, P. G. Phys. Rev. Lett. 65, 2740–2743 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Ptitsyn, O. B. J. Prot. Chem. 6, 273–297 (1987).

    Article  CAS  Google Scholar 

  20. Reva, B. A. & Finkelstein, A. V. Proc. 2nd Int. Meeting Molecular Basis of Biotechnology 17–18 (Pushchino, 1987).

    Google Scholar 

  21. Finkelstein, A. V. & Reva, B. A. Biofizika (USSR) 35, 402–406 (1990).

    Google Scholar 

  22. Wistow, G. et al. J. molec. Biol. 170, 175–202 (1983).

    Article  CAS  Google Scholar 

  23. Finkelstein, A. V. Bioorgan. Khimiya (USSR) 4, 340–344 (1978).

    Google Scholar 

  24. Fauchere, I. I. & Pliska, V. Eur. J. Med. Chem. Chim. Ther. 18, 369–375 (1983).

    CAS  Google Scholar 

  25. Ptitsyn, O. B. & Finkelstein, A. V. Biopolymers 22, 15–25 (1983).

    Article  CAS  Google Scholar 

  26. Finkelstein, A. V. Program ALB (Brookhaven Protein Data Bank, USA, & EMBL Data Base, Heidelberg, Germany, 1983).

  27. McKay, D. B., Weber, I. T. & Steitz, T. A. J. biol. Chem. 275, 9518–9524 (1982).

    Google Scholar 

  28. Rossmann, M. G. et al. J. molec. Biol. 165, 711–736 (1983).

    Article  CAS  Google Scholar 

  29. Winkler, F. K., D'Arcy, A. & Hunziker, W. Nature 343, 771–774 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, A., Reva, B. A search for the most stable folds of protein chains. Nature 351, 497–499 (1991). https://doi.org/10.1038/351497a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351497a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing