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There was an error in the geographical character-state mapping in
this paper. The authors inadvertently reported the values corre-
sponding to mapping these characters onto the tree in an unordered
manner. Correctly ordering the character-state changes according to
the `express-train' model does not change the main conclusion of
the paper: the express-train model ®ts much better than would be
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The list of interactions between Helicobacter pylori proteins that
are described and analysed in this paper are available as Supple-
mentary Information on Nature's World-Wide Web site (http://
www.nature.com) or as paper copy from the London editorial of®ce
of Nature. Proteins are named according to the nomenclature of The
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aluminum foil) and light bottles (28±33 mmol photons m-2 s-1) and incubated them for
24 h at 3 8C. We isolated individual ciliates from each light and dark replicate, washed them
three times with sterile media (10 ml) and transferred ten washed cells into a scintillation
vial. During the 2±3 h isolation period we maintained the samples in the dark on ice. We
prepared the samples for liquid scintillation counting as described28. We calculated rates
of photosynthesis by subtracting average 14C ®xation in the dark from ®xation in the
light. For the determination of M. rubrum chlorophyll, we isolated and washed ten cells
before transferring them into vials containing cold 90% acetone and incubating them at
-20 8C overnight for extraction. We measured chlorophyll a using a 10-AU Turner
¯uorometer.
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Languages, like molecules, document evolutionary history.
Darwin1 observed that evolutionary change in languages greatly
resembled the processes of biological evolution: inheritance from
a common ancestor and convergent evolution operate in both.
Despite many suggestions2±4, few attempts have been made to
apply the phylogenetic methods used in biology to linguistic data.
Here we report a parsimony analysis of a large language data set.
We use this analysis to test competing hypothesesÐthe `̀ express-
train''5 and the `̀ entangled-bank''6,7 modelsÐfor the colonization
of the Paci®c by Austronesian-speaking peoples. The parsimony
analysis of a matrix of 77 Austronesian languages with 5,185
lexical items produced a single most-parsimonious tree. The
express-train model was converted into an ordered geographical
character and mapped onto the language tree. We found that the
topology of the language tree was highly compatible with the
express-train model.

There are many parallels between the processes of biological and
linguistic evolution and the methods used to analyse them4. Despite
these parallels, however, historical linguists have not used the
quantitative phylogenetic methods that have revolutionized
evolutionary biology in the past 20 years8. So, although linguists
routinely use the `̀ comparative method''9 to construct language
family trees from discrete lexical, morphological and phonological
data, they do not use an explicit optimality criterion to select the
best tree, nor do they typically use an ef®cient computer algorithm
to search for the best tree from the discrete data. This is surprising
given that the task of ®nding the best tree is inherently a com-
binatorial optimization problem of considerable computational
dif®culty10. One potential problem with a quantitative phylogenetic
approach to linguistic evolution arises from the more reticulate
nature of cultural evolution. Some authors11,12 have claimed that
reticulate processes in linguistic evolution overshadow those of
descent, leading them to reject the appropriateness of the family-
tree model. We believe that this is an empirical claim, which can be
evaluated using phylogenetic methods. If the data ®t well on the tree
and there is little systematic con¯icting signal, then the family-tree
model is supported. If the data ®t poorly, then alternative phylo-
genetic methods that do not assume a tree model, such as spectral
analysis or split decomposition, should be investigated. A critical
part of phylogenetic inference involves testing for congruence
between independent lines of evidence. Here we test a model of
the colonization of the Paci®c that is derived from predominantly
archaeological data by quantitatively examining its ®t with a
parsimony tree of Austronesian languages.

Prehistoric human colonization in the Paci®c happened in two
phases. Initially, Pleistocene hunter±gatherer expansions from
Island Southeast Asia through New Guinea reached the Bismarck
archipelago by 33,000 BP and the Papuan-speaking descendants of
these people are dispersed throughout New Guinea and parts of
Island Melanesia13. The second colonization wave of Austronesian
language speakers involved a diaspora of Neolithic farming peoples
out of south China and Taiwan around 6,000 BP

13±15. According to the
`express train to Polynesia' model, the Austronesian expansion from
Taiwan was extremely rapid, taking roughly 2,100 years to reach
the edges of western PolynesiaÐa distance of 10,000 kilometres.
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Converging evidence from archaeology and molecular anthropology
supports a rapid and relatively encapsulated dispersal of the
Austronesian speakers throughout the Paci®c13,16±18 (Fig. 1); how-
ever, there is some dispute about the exact degree of interaction with
earlier Melanesian settlers, the rate at which the migration occurred
and the extent and location of any colonization pauses19. In broad
terms, most Paci®c scholars seem to favour the express-train model,
but others have argued that the ancestral Polynesians derive from an
older Melanesian `̀ matrix''7,20. The latter authors stress that a
phylogenetic, colonization-focused perspective obscures the high
degree of prehistoric contact and inter-relationships amongst Paci®c
people; we use Terrell's phrase6Ðthe entangled-bank modelÐto
represent this. These two models are not mutually exclusive, but are
best characterized as two ends of a continuum of modes of human
prehistory, with a pure tree at one end and a maximally connected
network at the other. The issues surrounding the settlement of the
Paci®c are thus a microcosm of the general debate about whether
human cultural evolution can be appropriately represented as a tree.

We tested one aspect of the express-train model, the colonization
sequence, in the way that biologists test hypotheses about the
sequence of events in biological evolution. We constructed a tree
and then mapped the trait onto the tree to see whether the inferred
sequence of changes ®ts a particular scheme21. Figure 2 shows how a
simple colonization scheme can be tested by mapping geography
onto an independent tree. We grouped languages according to
Diamond's archaeological/geographical stations5,22. Using character-
state functions in the program MacClade23, we assigned each station
a character state from 0 to 9. The states were ordered in a character-
state tree to ®t the sequence proposed by the express-train model.
For example, in Fig. 1 the Taiwanese languages were grouped as state
1, the Remote Oceanic languages as state 8; this means a change
from state 1 to 8 would require ®ve steps (according to the model
presented in Fig. 1). By mapping these character states onto the
most-parsimonious language tree (Fig. 3), we were able to evaluate
the express-train model in a quantitative manner. If the language
tree ®ts the express-train model well, then the character-state tree
should ®t well onto our obtained tree. The shortest possible tree
length required to optimize the character-state tree onto the

language tree was nine (that is, the number of character states
minus one). When the character-state tree was mapped onto the
optimal tree, we obtained a tree length of 13. To assess the statistical
signi®cance of the ®t, we randomly shuf¯ed the character states
between the 77 languages 200 times23. This gave us a null distribu-
tion of tree lengths with a mean tree length of 48.9 steps (s.d. 1.98,
range 43±53). This indicates that the express-train character-state
tree ®ts the language tree with signi®cantly fewer steps than would
occur by chance. In fact, the obtained ®t was very close to the
shortest possible length (nine), indicating that the express-train
model ®ts the language tree exceptionally well.

By de®nition, an entangled-bank model cannot be represented by
a character-state tree; however, we can assess whether the language
data support the entangled-bank model by examining the topology
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Figure 1 The express train to Polynesia model of the Austronesian colonization of the

Paci®c (adapted from refs 5 and 22). Approximate archaeological dates of settlement

are indicated13,22. Each `station' is a separate character state: 1, Taiwan; 2, Philippines,

Chamorro, Palau; 3, Borneo, Indonesia, Malay; 4, Sulawesi; 5, central Malayo-Poly-

nesian; 6, south Halmahera/west New Guinea; 7, near Oceania; 8, remote Oceania; 9,
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Figure 2 A phylogenetic approach to testing a colonization sequence. a, Model for the
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two and then to area three. b, Tree that ®ts perfectly with the colonization model in a

(®t = 2 steps). c, A tree that ®ts poorly with the colonization sequence (®t = 4 steps).
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of the tree. While advocates of this model make no predictions
about the likely shape of a language tree under an entangled-bank
conception, they argue that large-scale migration patterns in lan-
guages are obscured by culture contact7. Consequently, they might
predict a layered, `candelabra-like' tree that emphasizes regional
contact. In contrast, an (archaeologically) quick colonizing wave
from Island Southeast Asia through the Paci®c to Polynesia should
produce a tree topology that is `chain-like' (see Fig. 3). Proponents
of the entangled-bank model argue that culture, language and
biology `combine and recombine' in such complex interactions
that patterns of language relationships may tell us very little about
the history of language speakers7. In this case, the tree should merely
re¯ect geographical proximity. Our tree, however, shows several
cases where the relationships ®t the historical sequences implied by
the express-train model but con¯ict with geographical proximity
(see Fig. 3).

Although we reject the speci®c features of the entangled-bank

model, we do not claim that Austronesian cultural history is totally
tree-like. The consistency index (a measure of the ®t of the lexical
data on the tree) is only 0.25. This value is not substantially lower
than would be expected for equivalently sized morphological and
molecular data sets24 in which hybridization is uncommon.
Although it is probable that much of the poor ®t in the lexical
data is due to the loss of cultural or linguistic features15,25,
archaeological26 and genetic27 evidence do indicate that population
interaction and `borrowing' are likely to have occurred even
between far-¯ung archipelagoes. A way of approaching the issue
of borrowing is to examine languages whose placement con¯icts
with the colonization scheme. For example, Buli and Numfor are
grouped inside the Oceanic language group on our tree, whereas the
express-train model places these south Halmahera/west New
Guinea languages outside the Oceanic group. Similarly, Chamorro
and PalauÐlanguages whose closest relationships are most likely
with the Philippines28Ðare grouped with the Oceanic languages. In
both these cases, borrowing is a likely cause of the incongruence
between the express-train model and our tree. More detailed
evidence for speci®c patterns of reticulation is evaluated elsewhere
(F.M.J. and R.D.G, manuscript in preparation).

The patterns apparent in linguistic relationships are integrally
tied to the movements, contacts and activities of language speakers.
Our preliminary investigations have shown that a phylogenetic
approach to languages offers the ability to test hypotheses about
human prehistory. In biology, phylogenetic methods have become
invaluable tools for investigating patterns and processes in
evolution. In the future, phylogenetic methods may provide a
common methodology and analytic framework to integrate data
from ethnography, archaeology, linguistics and genetics. This is an
important step towards a uni®ed approach to biological and
cultural evolution. M

Methods
Data were taken from Blust's Austronesian Comparative Dictionary (R. Blust, personal
communication). This is a continuing project to compile comparative lexical data from
the largest language family in the world. Currently, the dictionary is 25% complete and
comprises 5,185 lexical items across 191 languages. Each lexical item has a set of cognate
terms listed with the languages in which they appear. To ensure that there was suf®cient
information in the data set for phylogenetic analysis, we cut the number of languages from
191 to 68 by using a criterion of 150 or more appearances in a cognate set. An additional
nine languages were then added to provide a balanced representation of the principal
Austronesian language subgroups, giving us 77 languages in total. The presence of a
language in a cognate set was coded as `1' in a matrix of 77 languages ´ 5,185 lexical items.
If a language was not present in a particular cognate set, that language was coded as `0' for
that item in the matrix. Linguistic15,28, archaeological13 and genetic16,18 evidence agrees that
Taiwan is the most likely Austronesian homeland, and so the two Taiwanese languages
(Amis and Paiwan) were used to root the tree. We used PAUP* 4.0d65 (ref. 29) to ®nd the
set of most-parsimonious trees. To maximize the chance of ®nding optimal trees, 1,200
random addition sequences and tree bisection±reconnection branch swapping were used.
Characters were typed as easy loss (5:1 ratio) on the assumption that independent losses of
lexical items were more likely than independent gains. Similar assumptions about
character coding have been used for complex behavioural characters30, and linguistic
features (such as phonemes) have been shown to be lost in a west-to-east direction across
the Paci®c25. Other easy loss codings and equally weighted parsimony produced similar
results (R.D.G. and F.M.J., manuscript in preparation). The search found one shortest tree
of 52,129 steps with a consistency index of 0.25. The linguistic data set contained
signi®cant phylogenetic signal (treelength skewness index g1 = -0.505 calculated from
100,000 random trees).
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The mammalian brain comprises a number of functionally dis-
tinct systems. It might therefore be expected that natural selection
on particular behavioural capacities would have caused size
changes selectively, in the systems mediating those capacities1±3.
It has been claimed, however, that developmental constraints
limited such mosaic evolution, causing co-ordinated size change
among individual brain components3. Here we analyse com-
parative data to demonstrate that mosaic change has been an
important factor in brain structure evolution. First, the neocortex
shows about a ®vefold difference in volume between primates and
insectivores even after accounting for its scaling relationship with
the rest of the brain. Second, brain structures with major
anatomical and functional links evolved together independently
of evolutionary change in other structures. This is true at the level
of both basic brain subdivisions and more ®ne-grained functional

systems. Hence, brain evolution in these groups involved complex
relationships among individual brain components.

Studies of mammalian brain evolution have highlighted the
neocortex as a structure associated with intelligence and ¯exible
behaviour, which varies enormously in size between species4±6.
Large-brained mammals, such as primates, tend to have a neocortex
that is disproportionately expanded relative to other structures3.
The extent to which this size variation can be explained by
allometric scaling relative to the rest of the brain, as opposed to
size changes independent of other brain structures, remains unclear
however3,7. Figure 1 indicates clearly that neocortex size varies even
after accounting for its scaling relationship with the size of the rest of
the brain. The three parallel lines with different intercepts indicate
taxonomic differences (grade shifts) in relative neocortex size
between primates and insectivores, and, within the primates,
between strepsirhine and haplorhine sub-orders. Independent con-
trasts analysis con®rms the presence of signi®cant grade shifts in
relative neocortex size. First, the slopes are statistically indistin-
guishable (haplorhine versus strepsirhine primates: t � 1:6, degrees
of freedom, d:f : � 37, P � 0:13; primates versus insectivores:
t � 0:6, d:f : � 71, P � 0:54). Second, the absolute values of the
contrasts between orders and sub-orders are unusually large and
beyond the range of all other contrasts in each data set (haplorhine
versus strepsirhine residual = 2.8 standard deviations greater than
the mean; primate versus insectivore residual = 5.6 standard
deviations greater than the mean). On the basis of separate regres-
sion equations for insectivores and primates (averaging between
strepsirhines and haplorhines), a primate with a non-neocortical
brain size of 1,000 mm3 would have a neocortex nearly ®ve times
larger than would an insectivore with the same non-neocortical
brain size (881 mm3 versus 187 mm3). In some speci®c cases, we
observe an even greater difference in relative size. For example, the
common tenrec Tenrec ecaudatus, an insectivore, has a non-
neocortical brain volume somewhat greater than that of the

Table 1 Regression statistics for the scaling of neocortical white and grey
matter volume on volume of the rest of the brain

White matter volume Grey matter volume

Slope Con®dence
intervals

r2 Slope Con®dence
intervals

r2

.............................................................................................................................................................................

Insectivores 1.32 1.23±1.41 0.95 1.09 0.94±1.18 0.94
Strepsirhines 1.48 1.32±1.65 0.99 1.06 0.98±1.14 0.99
Haplorhines 1.53 1.37±1.67 0.98 1.12 1.07±1.18 0.99

New World Monkeys 1.40 1.20±1.59 0.98 1.08 0.96±1.21 0.98
Old World monkeys 1.42 0.13±2.71 0.92 0.97 0.45±1.49 0.97

.............................................................................................................................................................................
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Figure 1 Taxonomic differences in relative neocortex size among primates (strepsirhines

and haplorhines) and insectivores. Brain part volumes are in cubic millimetres. Open

circles, harplorhine primates; closed circles, strepsirhine primates; diamonds,

insectivores. Slopes (and 95% con®dence intervals) for insectivores, strepsirhines and

haplorhines respectively are 1.11 (1.03±1.20), 1.13 (1.04±1.22) and 1.20 (1.14±1.26).

© 2000 Macmillan Magazines Ltd



letters to nature

NATURE | VOL 407 | 26 OCTOBER 2000 | www.nature.com 1015

heteromeric P2X2/3 receptors appear most important. Second, our
formalin test data are consistent with a role for ATP activation of
P2X3 in mediating some nociceptive responses to tissue damage.
Finally, we show that P2X3 is critical in regulating micturition re¯ex
excitability. One explanation for these data is that ATP, released in
response to stretch during distension and ®lling of the urinary
bladder, excites primary afferent voiding circuitry through direct
interaction with P2X3 receptors. ATP is released from rabbit
urothelium in response to stretch7, and P2X3 is clearly present on
nerve ®bres innervating urinary bladder23 (Fig. 4). Electrophysio-
logical evidence also indicates that a,b-Me-ATP directly activates
and desensitizes mechanosensitive pelvic afferents arising from rat
urinary bladder9. Thus, loss of P2X3 might impair sensory neuron
activity during bladder ®lling, raising the volume threshold for
activation of the micturition re¯ex. As loss of compliance and
lowered volume thresholds are a component of many bladder
storage disorders (for example, overactive bladder)24, selective
modulation of P2X3 may provide new therapies. The potential for
similar P2X3 roles in mechanosensation in other hollow organs (for
example, GI tract and lung)25 needs to be explored. M

Methods
Physiological studies

F2 and F3 mice were used for in vitro and in vivo studies, respectively. All experiments were
performed blind. Dissociation of neurons and whole-cell patch-clamp recording was
carried out as described previously26. Agonists were applied rapidly by microperfusion
from a 4-barrel manifold controlled by computer-driven solenoid valves. Exchange of
solution around the cell was complete in less than 100 ms. Time between applications was
2 min (nodose) and 3.5 min (DRG), allowing suf®cient time to achieve reproducible
responses. The minimum detectable response was 20 pA. Traces were acquired using
FETCHEX (pCLAMP V.6.04 software, Axon Instruments), and plotted using ORIGIN
V.4.1 (Microcal). Pain-related responses to injection of ATP into the hindpaw were
measured essentially as described for rat17. The hindpaw lifting time was measured for a
total of 4 min following injection of ATP. Thermal sensitivity was assessed using a radiant
heat stimulus and tail immersion in a 52 8C water bath. Mechanical sensitivity was assessed
using a set of calibrated von Frey ®laments. For the formalin test, the hindpaw lifting and
licking time was measured for a total of 30 min. Conscious mouse cystometry was
performed essentially as described for rat27. Recovery following catheter implantation was
for 7 days, and intravesical saline infusion was at a rate of 50 ml min-1. For transurethral
cystometry, bladder re¯exes were assessed in urethane-anesthetized mice essentially as
described for rat28. Each cystometrogram consisted of intravesical distension to a total
volume of 0.3 ml, at a rate of 20 ml min-1. Contractions greater than 10 cm of H20 were
taken as micturition contractions.

Generation of P2X3 receptor-de®cient mice and immunohistochemistry methods are
described in Supplementary Information.
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ATP activates damage-sensing neurons (nociceptors) and can
evoke a sensation of pain1. The ATP receptor P2X3 is selectively
expressed by nociceptors2,3 and is one of seven ATP-gated, cation-
selective ion channels4±6. Here we demonstrate that ablation of the
P2X3 gene results in the loss of rapidly desensitizing ATP-gated
cation currents in dorsal root ganglion neurons, and that the
responses of nodose ganglion neurons to ATP show altered
kinetics and pharmacology resulting from the loss of expression
of P2X2/3 heteromultimers. Null mutants have normal sensori-
motor function. Behavioural responses to noxious mechanical
and thermal stimuli are also normal, although formalin-induced

© 2000 Macmillan Magazines Ltd



letters to nature

1016 NATURE | VOL 407 | 26 OCTOBER 2000 | www.nature.com

pain behaviour is reduced. In contrast, deletion of the P2X3 receptor
causes enhanced thermal hyperalgesia in chronic in¯ammation.
Notably, although dorsal-horn neuronal responses to mechanical
and noxious heat application are normal, P2X3-null mice are unable
to code the intensity of non-noxious `warming' stimuli.

To examine the physiological role of the P2X3 receptor in the
absence of selective antagonists, null-mutant mice were generated
on an inbred (C57Bl6) and outbred (MF1) genetic background7,8

(see Supplementary Information). In most wild-type DRG neurons
(87.5%, n = 32; Fig. 1a), ATP elicited a large inward membrane
current (amplitude: 797 6 122 pA, mean 6 s.e.m., n = 28) that
desensitized rapidly (72 6 6% desensitization in 1 s). In P2X3

-/-

neurons, ATP evoked an inward current in a smaller proportion of
cells (56.7%, n = 37), the mean current was smaller (151 6 52 pA; n
= 21) and less desensitized (11 6 2% desensitized after 1 s). In wild-
type DRG neurons, 88.5% (n = 26) of the cells activated by ATP
responded to a subsequent application of a,b-Me-ATP with a
large (464 6 85 pA; n = 23) and rapidly desensitizing current (87
6 4%). In P2X3

-/- DRG, of the 20 neurons responding to ATP only 1
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Figure 1 Physiological effects of deleting the P2X3 receptor. a, b, The responses to a 1-s

application of 10 mM ATP in wild-type (+/+) and P2X3-null (-/-) neurons. Cells

responding to ATP were subsequently treated with 10 mM a,b-Me-ATP (a,b) a, DRG

neurons; b, nodose ganglion neurons. c±e, Responses of dorsal horn neurons to

peripheral stimuli in wild-type and P2X3
-/- mice. c, Individual examples of neuronal

responses to graded thermal stimuli recorded in wild-type and P2X3
-/- mice. d, Thermal

stimulus-response curves recorded in wild-type (n = 12) and P2X3
-/- (n = 17) mice.

Responses are presented as mean number of action potentials 6 s.e.m. Asterisk,

P # 0.05. e, Responses to mechanical stimuli elicited with von Frey ®laments show no

signi®cant differences between wild-type and P2X3
-/- mice. Electrical thresholds and

responses to suprathreshold electrical stimulation of A and C ®bre primary afferents are

shown in the Supplementary Information.
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responded to a,b-Me-ATP, with a small (22 pA) and non-desensi-
tizing current. This indicates that homomeric P2X3 receptors are the
major P2X subtype in mouse DRG neurons.

Patch-clamp recordings of nodose ganglion neurons in normal
and P2X3-null mice revealed very large ATP-evoked non-desensitiz-
ing currents. In nodose ganglion neurons (Fig. 1b), peak current
had mean values of 3,365 6 428 pA in wild-type (n = 27) and
2,250 6 684 (n = 23) in P2X3

-/- mice. In wild-type mice,
desensitization was 25.9 6 4.4% (n = 27), but P2X3

-/- neurons
desensitized more slowly (7.6 6 4.7%; n = 23). In the wild type, a,b-
Me-ATP application induced a mean current of 1,705 6 255 pA (n =
27). In the null mutant, a,b-Me-ATP application failed to evoke
any response (n = 23). Almost half of the currents evoked by ATP
are due to P2X2/3 heteromultimers; P2X2 receptors, as well as other
P2X subtypes, must account for the rest of the current. The lack of
P2X1 receptors is con®rmed by the fact that in P2X3

-/- nodose
ganglion neurons, a,b-Me-ATP was inactive.

In vivo recordings of dorsal horn neurons were used to examine
the consequences of ablating P2X3 on peripheral input into the
spinal cord9. There was no signi®cant change in the mechanically
evoked responses in P2X3-null mice, although the responses to the
greatest pressure (8.5 and 11.7 g) were slightly reduced. Both
threshold and suprathreshold responses of dorsal horn neurons
evoked after electrical activation of A and C ®bre primary afferents
were unaltered in the P2X3-null mice (see Supplementary Informa-
tion). This indicates that centrally located P2X3 receptors are not
signi®cantly involved in spinal nociceptive processing under acute
conditions, consistent with the lack of effect of spinally adminis-
tered P2X antagonists on nociceptive neuronal responses and
behaviour measured in rats10±12.

Differences were seen between the P2X3-null and wild-type mice
in their response to thermal stimuli, although no change was
observed in the neuronal responses to mechanical stimuli (Fig. 1).
Application of a range of thermal stimuli to the hindpaw of wild-
type mice, evoked a graded neuronal response in the dorsal horn
(Fig. 1c±d). In contrast, in P2X3-null mice very little neuronal
activity was evoked until noxious temperatures were reached13. This
is in agreement with a `normal' behavioural response to tempera-
tures within the noxious range, consistent with behavioural studies
showing no effect of pyridoxalphosphate-6-azophenyl-29,49-disul-
phonic acid (PPADS) in acute tests of thermal nociception12, but
indicates a de®cit in the ability of the null-mutant mice to code the
intensity of non-noxious `warming' stimuli.

Behavioural tests showed that responses to acute mechanical and
thermal stimuli were normal, precluding a major role for P2X3 in
transducing acute noxious stimuli (Fig. 2, and see Supplementary
Information). However formalin-induced pain behaviour was sig-
ni®cantly reduced in both phases, consistent with data obtained
using PPADS in mice14. Most strikingly, the development of thermal
hyperalgesia in response to chronic in¯ammation induced with
complete Freund's adjuvant but not short-term in¯ammatory
stimuli such as carrageenan (Fig. 2b) or capsaicin (data not
shown) was markedly potentiated.

These data indicate that P2X3 receptors within the dorsal horn have
a signi®cant regulatory role in persistent in¯ammatory pain. In spinal
cord slices, ATP has been shown to potentiate glutamate-induced and
synaptically evoked currents, as well as causing delayed depression of
synaptic currents, probably owing to the actions of adenosine11,12,15,16.
The unexpected hyperalgesia present in P2X3 receptor knockouts
may therefore be due to the actions of ATP on other less rapidly
desensitizing P2 receptors within the dorsal horn, or may result from
the loss of a regulatory function of P2X3 receptors on other
modulatory systems. Thus, there is no major role for the P2X3

receptor in noxious mechanosensation and acute pain responses17,18.
However, these studies demonstrate a role for ATP acting through
P2X3 in in¯ammatory pain processing, as well as an unsuspected
role for P2X3 receptors in the coding of innocuous warmth. M

Methods
Gene targeting

A targeting construct in which exons 2±7 of the P2X3 gene were deleted was constructed
and knockout mice were generated and analysed by standard methods (see Supplementary
Information)7,8,19.

Electrophysiology

DRG or nodose ganglia from adult mice (6±9 weeks old) were removed and neurons were
cultured20. Recordings were made 1±3 days after plating, using patch-clamp electrodes of
tip diameter 0.7 mm and an Axopatch 200B ampli®er (Axon Instruments) as described20.
Drugs were used at 10 mM ATP (magnesium salt), 10 mM a,b-Me-ATP (lithium salt).
Cells between 15- and 35-mm diameter were randomly chosen for experiments20.

Dorsal horn recordings

Extracellular recordings were made in vivo as described10,21. The neuronal responses
evoked by transcutaneous electrical (train of 16 stimuli, 0.5 Hz, 2-ms wide pulse) and
thermal (water jet applied for 10 s, 32±47 8C) stimuli applied to the peripheral receptive
®eld located on the ipsilateral hind paw were characterized. Mechanical stimulation (von
Frey ®laments 0.166 g to 11.7 g) in the innocuous and noxious ranges was also applied to
peripheral receptive ®elds.

Behavioural studies

Mice were examined for spinal re¯exes and motor skills, as well as responses to acute and
in¯ammatory pain, as described in detail21.
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indirect immuno¯uorescence using an anti-cytochrome c antibody (65972A, PharMin-
gen, 1:1,000), or by cell fractionation into cytosol and membrane components and
immunoblotting (cytochrome c antibody 7H8.2C12, PharMingen, 1:1,000 dilution).
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With the availability of complete DNA sequences for many
prokaryotic and eukaryotic genomes, and soon for the human
genome itself, it is important to develop reliable proteome-wide
approaches for a better understanding of protein function1. As
elementary constituents of cellular protein complexes and path-
ways, protein±protein interactions are key determinants of pro-
tein function. Here we have built a large-scale protein±protein
interaction map of the human gastric pathogen Helicobacter
pylori. We have used a high-throughput strategy of the yeast
two-hybrid assay to screen 261 H. pylori proteins against a
highly complex library of genome-encoded polypeptides2. Over
1,200 interactions were identi®ed between H. pylori proteins,
connecting 46.6% of the proteome. The determination of a
reliability score for every single protein±protein interaction
and the identi®cation of the actual interacting domains per-
mitted the assignment of unannotated proteins to biological
pathways.

During the past few years, interaction maps have been proposed
for viral3±5 and eukaryotic (Saccharomyces cerevisiae2,6,7 and
Caenorhabditis elegans8, for example) genomes. Here we describe
the ®rst procaryotic interaction map, for which the strategy used
(Fig. 1) is also a variation of the two-hybrid assay2. It differs
considerably by both the type of results generated and the through-
put of the experimental procedures. We constructed a library of
random genomic fragments of the H. pylori strain 26695 that
had been previously sequenced9. A high complexity library was
®rst obtained in Escherichia coli (over ten million clones). Ninety-
seven per cent of the plasmids contained a single genomic insert
(mean size 1,000 6 550 nucleotides). This library was then intro-
duced into yeast by transformation. Two million independent yeast
colonies were collected, pooled and stored at -80 8C as equivalent
aliquot fractions of the same library.

In parallel, a large set of bait plasmids was constructed in a bait
vector designed to decrease the level of transcriptional auto-
activation2. Bait constructs were speci®cally adapted for interaction
screens, yielding `validated baits'; for example, hydrophobic puta-
tive trans-membrane domains were discarded to avoid any non-
nuclear localization of the bait protein in the yeast cell. In some
cases, speci®c open reading frame (ORF) domains were selected for
the bait design. For every single bait construct, we performed a
preliminary small-scale screening experiment that determines the
selective pressure (that is, modifying the selective medium, see
Methods) to be applied to obtain a small number of independent
positive clones per million interactions tested (usually less than 10).
All positive colonies were then picked, and prey fragments were
individually identi®ed by sequence analysis and comparison with
the genomic database through a dedicated integrated laboratory
production management system (Fig. 1).

Protein±protein interaction maps are built on experimental data
that ideally yield a heuristic value for each connection. Our
procedure involves several steps of processing of raw two-hybrid
results (Fig. 1). First, positive prey fragments are clustered into
families of overlapping fragments. The common sequence shared by
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these fragments is referred to as the selected interacting domain
(SID). Second, SIDs that do not code for part of an H. pylori ORF
are discarded. Third, for every remaining SID, a PIM biological
score (PBS) is computed. The PBS is based on a statistical model of
the competition for bait-binding between fragments. It is computed
like a classical expected value (E value), and ranges from 0 (speci®c
interaction) to 1 (probable artefact). For practical use, the scores
were divided into four categories, from A (score very close to 0) to D
(close to 1). A ®fth category, E, was added to distinguish interac-
tions involving only highly connected prey domains (SIDs found as
prey with frequency greater than a ®xed threshold). These are most
probably two-hybrid artefacts. Although they may have some
biological signi®cance, they add little speci®c information to the
interaction map. It should be emphasized that domains, rather than
whole proteins, are tagged. For example, the carboxy-terminal
region of protein HP0705/UvrA was found as a prey in 16 different
interactions that were scored in the E category, but the same protein
was selected through another domain as a speci®c interacting prey.
Because global connectivity is taken into account, the PBS is

computed incrementally over the whole PIM and its discriminatory
power increases as screening results accumulate.

We carried out 285 screens on 261 H. pylori bait ORFs chosen as
follows: ®rst, a core set of 50 proteins known to be involved in
complexes and/or in pathogenicity was used to validate the
approach; and second, 211 baits were then picked randomly, with
a slight bias toward regions of the proteome that were still unex-
plored. Positive colonies (13,962) were selected (Table 1), and more
than 95% of them were identi®ed by sequencing the prey insert.
From these prey fragments, 2,680 independent SIDs were de®ned,
out of which 1,100 fell into non H. pylori ORF coding regions and
were discarded (Fig. 1). Thirty-one SIDs were classi®ed in the E
category. The remaining SIDs de®ne 1,280 interactions including 62
homo-oligomeric interactions. In total, 46.6% H. pylori proteins of
the proteome were connected, which corresponds to an average
connectivity of 3.36 partners per connected protein (without
counting homodimeric connections). Only 14 screens out of 285
yielded no positive clones or interactions with nonsigni®cant score
values, illustrating the fact that our technology reduces the rate of
false negatives.

Given that little information is available on protein interactions
in H. pylori, we used a data set of known interactions in E. coli to
validate further our experimental strategy, and to evaluate the
correlation between the PBS and the actual biological signi®cance
of interactions. For each H. pylori protein present in the interaction
map, signi®cant E. coli orthologues (FastA score , 0.01) were
selected and their annotations in the SwissProt database (release
38)10 were veri®ed manually for known interactions shown by
various biochemical means. The resulting E. coli interaction list
was compared with interactions found in H. pylori (Fig. 2). Among
these E. coli interacting pairs, 53% of the homodimers and 67% of
the heterodimers were found. Among heterodimers, ®ve out of six
negative pairs were tested only in one direction, suggesting that
performing the reciprocal screens would decrease this number.
Most interactions that were described for orthologous proteins in
E. coli fell into the high-scoring interaction category (A) according
to our PBS calculation (7/10 homodimers and 9/12 heterodimers)
con®rming the heuristic value of the classi®cation. The interaction
map was also analysed according to the classi®cation of H. pylori
proteins into 14 functional categories previously proposed9. For 10
categories out of 14, more intra-category protein±protein interac-
tions were observed than expected from a random theoretical
distribution (Z-scores ranging from 2 to 50; in all cases, P , 0.05),
suggesting the existence of a signi®cant correlation between
functional grouping and detection of interactions.

To display and analyse the interaction data, we developed a
software platform composed of a database, a web-based graphical
interface layer and various query and analysis tools (the PIMRider,
Fig. 3; see also http://pim.hybrigenics.com). Starting from a gene
name (or an ORF name), the PIMRider draws an automatic layout
of the neighbourhood of this protein in the protein interaction map
(Fig. 3a). Paths connecting two proteins can also be queried.

Data collection: PIMBuilder

Processing and display: PIMRider

285 Bait
from 261 ORF

285 bait
from 261ORFs  

Prey Library
2x106

fragments

Prey library
2×106 independent

fragments

MatingMating

Prey Identification
95.2% clones

Prey identification
95.2% clones

Selected Interacting Domain (SID) identification
2680 SID

Selected interacting domain (SID) identification
2,680 SIDs

Protein Interaction Scoring
PIM Biological  Score (PBS)
Protein interaction scoring
PIM biological score (PBS) 

Prey Selection
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Prey selection
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Hp genomic
database:1,590 ORFs 

41% non-Hp-ORF
encoded SIDs
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Protein Interaction Map (PIM) : 1524 InteractionsProtein interaction map (PIM): 1,524 Interactions

1,280 interactions with PBS = A to D
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244 interactions with PBS = E

Genomic
DNA

Genomic
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Figure 1 Outline of the strategy for building an H. pylori (Hp) proteome-wide interaction

map. A production database (the PIMBuilder) was built that contains information related to

the genomic sequence of H. pylori, which codes for 1,590 putative proteins or ORFs. It

was populated with raw data from screening experiments. The PIMBuilder tracks all

biotechnological or bioinformatics operations performed during the production processes,

stores information about all biological objects produced during experiments, and

interfaces with robots and bioinformatics modules. It also implements the procedure used

to construct PIMs from raw experimental data. After identi®cation of almost all positive

clones, overlapping prey fragments were clustered into families to de®ne SIDs. Those

families that had no biological coding capability (antisense or intergenic region, out of

frame fragments occurring in a single frame) were discarded. A PIM biological score

(PBS; see Methods) was then calculated for H. pylori ORF-encoded SIDs. Interactions were

grouped into categories A to D (from high to low heuristic values). The global connectivity

of the PIM was also analysed to detect highly connected prey polypeptides. Those

interactions were grouped in the E category. Processing of data and visualization of

interactions were performed by an in-house bioinformatic platform (PIMRider).

Table 1 General features of the H. pylori interaction screens

Screening data Total or mean value Comments
.............................................................................................................................................................................

Number of screens 285 261 different H. pylori ORFs
Combination of bait/prey
polypeptides assayed

5.6 ´ 109

Number of prey polypeptides
assayed per bait

2 ´ 107

Number of selected colonies
per bait (1st reporter)

916 From 0 to 15,000

Number of selected clones per
bait (2 reporters)

49 From 0 to 139

Number of selected colonies
per million pairs tested

3.8 From 0 to 25

Number of selected clones 13,962
Number of sequenced clones 13,296 95.2 %
.............................................................................................................................................................................
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Connections are displayed with their PBS scores, and can be ®ltered
according to score categories. A graphical summary of information
describing all interaction domains within a given protein can be
displayed (Fig. 3b). Raw data on every interaction can be retrieved.
Finally, the PIMRider supplies a description of each gene with
functional and genomic information, and includes links to
signi®cant bibliographic references and to relevant external data-
bases, such as PyloriGene (http://genolist.pasteur.fr/PyloriGene/).
PyloriGene is a manually annotated database of the two H. pylori
sequenced genomes9,11, that integrates all publicly available infor-
mation on genes and proteins and has been elaborated with a
structure similar to that of the Bacillus subtilis SubtiList database12.

Exploring the protein±protein interaction map reveals biologi-
cal pathways and allows prediction of protein function. A ®rst
example concerns chemotaxis (see Fig. 3a). The H. pylori genome
reveals three homologues of E. coli proteins that are involved in the
chemotactic pathway (CheA, CheW and CheY) and proteins such
as TlpA similar to chemotaxis receptors (MCPs). CheA was found
to interact with CheY and CheW, and distinct interacting domains
were precisely identi®ed (Fig. 3b). The domain of CheA which
binds to CheY precisely overlaps with the interacting domain
assigned by a structural study in E. coli13. The TlpA-binding site for
CheW was localized in a domain known, in E. coli, to be
methylated and implicated in the transduction of the chemotactic
signal.

The urease complex was also examined. Urease activity is essen-
tial for H. pylori pathogenicity and its synthesis requires two
structural subunits, UreA and UreB, and the product of four
accessory genes: ureE, ureF, ureG, ureH14. Complexes between
accessory proteins and their role in nickel incorporation at the
urease active site have been described for orthologues, but little
information is available for H. pylori (for review, see ref. 15). The

protein interaction map revealed the connection between UreA and
UreB, and one of the two expected homo-oligomeric interactions of
structural subunits (UreA); the UreB homodimer could not be
detected. A connection between accessory proteins and the struc-
tural subunits occurs via UreH and UreA, which is consistent with
the presumed chaperone role of UreH15. A new structural link was
found between UreG and UreE. The UreF and UreH proteins were
connected, but no connection between UreG and UreF or UreH was
detected. In addition to the accessory proteins, the urease operon
codes for an inner-membrane protein, UreI, essential for resistance
to acidity16 and recently described as a H+-gated urea channel17. The
third cytoplasmic domain of this protein reveals a potential
interaction with the ExbD protein which is involved in transmis-
sion of PMF (proton motor force) energy to outer-membrane
receptors.

Combination of genomic and proteomic data also permits
function prediction. The H. pylori proteome contains a homologue
of the E. coli HolB protein. In E. coli, this protein interacts with HolA
to form part of the DNA polymerase core18. We found one high-
scoring interaction between H. pylori HolB and an uncharacterized
polypeptide, HP1247. A pairwise alignment between E. coli HolA
and HP1247 highlighted structural homology (Fig. 4) not found by
previous sequence analysis (Fig. 2). We thus assign the HolA
function to the H. pylori HP1247 protein. The organization of
bacterial genomes into operons suggests a functional relationship
between the corresponding gene products that can be directly
compared with our protein interaction map. Indeed, we found
interactions between proteins that were likely to be expressed from a
single operon (Table 2). Among these, we detected interactions
between proteins known to interact in H. pylori (ScoA-ScoB) or in
other organisms (RpsR±RpsF, MoaE±MoaD, FtsA±FtsZ), and
between polypeptides involved in the same enzymatic activity and
not yet described as interacting (HypE±HypF).

Selected interacting domains can also be analysed in terms of
protein structure. The prokaryotic RNA polymerase, composed of a
core enzyme (a2bb9) associated with a j-factor, is one of the best
studied multisubunit enzymes. In H. pylori, the b- and b9-subunits
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Figure 2 Sets of E. coli interaction data for which H. pylori orthologous proteins were

identi®ed and assayed in interaction screens. a, Homodimers; b, heterodimers. Names of

E. coli proteins are boxed. Unidenti®ed interactions between H. pylori orthologues are

scored as `-' and shown in white boxes. Identi®ed H. pylori interactions are indicated in

grey boxes with their PBS score category (A, B, C or D). When several orthologues were

identi®ed, only the best scoring homologue was considered. For heterodimers, arrows

indicate the direction of the screen (bait to prey) that was performed. The black (or white)

colour of the arrow indicates a positive (or negative) result in the interaction screen.

Figure 3 PIMRider screen shots. a, The PIMViewer displays a portion of the protein

interaction map around the CheA protein. Links between proteins identify connections

with their colour-coded PBS score; b, the MultiSID Viewer exhibits the various interacting

domains in the CheA protein (for details see http://pim.hybrigenics.com).
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usually found in other bacteria are fused into a single polypeptide
(RpoB). One of the two alternative j-factors present in H. pylori,
(HP1032), is similar to the E. coli FliA protein (sigma 28) necessary
for transcription of genes involved in ¯agellar biosynthesis19. We
identi®ed a precise region of RpoB that interacts with the H. pylori
FliA. This selected interacting domain (residues 841±959) maps
exactly to a structural domain called the ¯exible ¯ap20. The RpoB-
interacting domain of FliA falls in the regions 3.2±4.2 of this
j-factor (residues 175±255). Biochemical studies suggest an inter-
action between the ¯ap domain of RpoB and region 4 of sigma
factors20. Our experiments thus characterize this interaction and
support the role of the ¯ap domain and s-factors in the transition
from an open complex to a processive elongation complex21.

Our work provides a way to characterize proteome-wide protein
interaction maps. Our results identify complexes that have been
shown or postulated to exist in other organisms, such as in E. coli.
They also complement sequence information about homologous
proteins and operon prediction from the location of genes on the
chromosome. Finally, identi®ed interacting domains could be
mapped on three-dimensional structures of proteins. As a whole
they lead to the assignment of a functional role for many as yet
uncharacterized proteins and provide tools, such as interacting
domains, for further biological experiments. Our technology was
designed to speci®cally address the main known causes for false-
negative and false-positive results in two-hybrid assays. It is now
clear that interactions are not necessarily detected positive by two-
hybrid assays when used in reciprocal directions (Fig. 2; see also refs
4, 8, 22). Parallel screening against highly complex libraries of

fragments increases the number of `two-hybrid-capable' candidates
and reduces the rate of false negatives that arise with the classical
two-hybrid matrix approach (that is, pair wise testing of a collection
of proteins6,7). Concerning the false positives, the speci®c design of
selection procedures that permit a strong selectivity for all baits and
the statistical analysis made possible by the experimental procedure
(that is, reproducible exhaustive screening of fragment libraries)
allows us to detect and tag nonspeci®c partners through a global
scoring scheme.

Ultimate validation of biological signi®cance should come from
additional biological information, but comparison of our results
with previously described interactions of H. pylori proteins and also
of orthologous E. coli proteins supports the reliability of the
approach. Protein interaction maps can be built at the scale of a
proteome. Our technology is applicable to higher eukaryotes, for
which highly complex random-primed complementary DNA
libraries are screened for interacting domains. The identi®cation
of interacting domains is a direct consequence of the library
screening approach and presents key advantages such as mapping
of new functional domains or correlation between sequence simi-
larity and functional homology. These interacting domains also
constitute a ®rst step towards the construction of dominant-
negative mutants or the development of an assay for interaction
modulation, applicable to new drug design. M

Methods
Bait cloning

Baits were constructed by PCR ampli®cation and cloning in the pB6 plasmid derived
from the original pAS2DD (ref. 2). Design of the primers was automatically proposed by
a software and validated for each ORF. PCR fragments were cloned by classical
enzymatic methods in a 96-well-plate format. All bait constructs used for interaction
screens were fully sequenced and compared to the genome sequence; any mutant clone
was discarded.

Library construction

We extracted genomic DNA from H. pylori 26695 as described23, and nebulized and
blunted it with a cocktail of mung bean nuclease, T4 and Klenow polymerase (NEB).
Adapters containing S®1 sites were ligated to blunt DNA. The adapted DNA was cloned
into pP6 plasmid derived from the original pACT2 and transformed in E. coli (DH10B;
LifeTechnologies). Sequence analysis was performed on one hundred randomly chosen
clones to establish the general characteristics of the library.

Screening procedure

The principle of the technique has been described2. Brie¯y, the screening conditions were
adapted for each bait during a test screen, before performing the full-size screening
experiment. The selectivity of the HIS3 reporter was modulated with 3-aminotriazole
(3AT). For about 15% of the screens, diploid cells were plated on selective medium
containing 3AT. In 44% of the screens, the second reporter (lacZ) was used directly on
plates for the selection of clones. In other cases, the lacZ reporter was used as a second
round of selection only for the selected clones. In all cases, LacZ activity was measured in a
quantitative luminometric assay (Tropix).

Identi®cation of interacting fragments

The prey fragments of the positive clones were ampli®ed by PCR, analysed on agarose gel,
partially sequenced at their 59 junction on a PE 3700 Sequencer and mapped on the
genomic sequence. Many clones were sequenced at their 39 junction to map precisely the
SID. All the steps after picking of positive clones were performed in bar-coded 96-well
plates and automated with Beckman Biomek 2000 and Multimek automats. At the end of
each screening experiment, the identity of the bait plasmid was controlled on a few positive
clones.

PIM biological score

The PIM biological score (PBS) computation relies on two different levels of analysis: ®rst,
a local (that is, taking into account only the results of one screen) score is computed for
each screen; and second, the global score is computed from the local scores by integrating
results from all screens performed within the same genomic library. Local scores are thus
computed only once, while global scores are recomputed each time new screens are
performed. For each screen, fragments are clustered by overlap to delimit SIDs. Fragments
that have no or very improbable coding capability (antisense, intergenic region, and out-
of-frame fusion fragments selected in a single frame) are then eliminated from the set of
prey fragments identi®ed from positive clones. Assuming that prey fragments compete for
the bait with `equal chances', the probability p for a given fragment to be selected in an
experiment is proportional to its expected number of occurrences within the library. p is

Table 2 Interacting proteins encoded by physically related genes

Protein 1 Protein 2

ORF Comments ORF Comments
.............................................................................................................................................................................

HP0047² HypE*, hydrogenase
functionally related protein

HP0048 HypF*, hydrogenase putative
transcriptional regulator

HP0061 ± HP0066 ATP-binding motif
HP0064 ± HP0063 ±
HP0311 ± HP0312 ATP-binding motif
HP0338 ± HP0337 ±
HP0691 ScoA, 3-oxoadipate coA-

transferase subunit A
HP0692 ScoB, 3-oxoadipate coA-

transferase subunit B
HP0697 ± HP0696 Putative hydantoin utilization*
HP0800 MoaE*, molybdopterin

converting factor, subunit 2
HP0801 MoaD*, molybdopterin

converting factor, subunit 1
HP0868 ± HP0869 HypA*, hydrogenase functionally

related protein
HP0874 ± HP0875 KatA, catalase
HP0978 FtsA*, cell-division protein HP0979 FtsZ*, cell-divison protein
HP1244 RpsR, ribosomal protein HP1246 RpsF, ribosomal protein
.............................................................................................................................................................................

* Function assigned by homology.
² The nomenclature used is that of PyloriGene database.

1 ---MYRKDLDHYLKQRLPKAVFLYGEFDFFIHYYIQTISALFKCDNPDIETSLFYASDYE

1 MRILYPEQLRAQLNEGLRAAYLLLGNDPLLLQESQDAVRQVAAAQGFEEHHTFSIDPNTD

58 KSQIATLLEQDSLFGGSSLVVLKLDFALHKKFKENDINLFLKALERPSHNRLIIGLYNAK

61 WNAIFSLCQAMSLFASR----QTLLLLLPENGPNAAINEQLLTLTGLLHDDLLLIVRGNK

118 SDTTKYKYTSDAIVKFFQKSPLKDEAICARFFIPKTWESLKFLQERANFLHLDISGHLLN

117 --------LSKAQENAAWFTALANRSVQVTCQTPEQAQLPRWVAARAKQLNLELDDAANQ

178 ALFEINNEDLGVSFNDLDKLAVLN--APITLEDIQELSSNAGDMDLQKLILGLFLKKS--

169 VLCYCYEGNLLALAQALERLSLLWPDGKLTLPRVEQAVNDAAHFTPFHWVDALLMGKSKR

234 ALDIYDYLLKEGKKDADILRGLERYFYQLFLF---FAHIKTTGLMDAKEVLG--YAPPKE

229 ALHILQQLRLEGSEPVILLRTLQRELLLLVNLKRQSAHTPLRALFDKHRVWQNRRGMMGE

289 IAENYAKNALRLKEAGYKRVFEIFRLWHIQSMQGQKE---LGFLYLTSIQKIINP

289 ALNRLSQTQLRQAVQLLTRTELTLKQDYGQSVWAELEGLSLLLCHKPLADVFIDG
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Figure 4 Alignment between H. pylori HP1247 protein and E. coli HolA. The two

sequences were aligned using the FastA algorithm. Identical (black) and similar (grey)

residues are outlined. The position of HP1247 C-terminal domain interacting with HolB is

indicated by a line.
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computed as a function of the fragment length and position, and of the length and
position distributions of fragments in the prey library (these distributions are calibrated
using data from random sequencing).

The local score is the probability for a given SID to be obtained under the equal chance
hypothesis, that is, as a result of random noise. It is deduced by combining probabilities p
(using a binomial law) from each of the independent fragment de®ning it. A (global) PBS
is computed for each protein interaction after pooling results from all screens. On the basis
of an independence hypothesis, scores from different screens are combined together when
the same protein domain pair is involved. The resulting PBS thus represents the
probability that the protein±protein interaction is due to noise. Scores are real numbers
ranging from 0 to 1, but are grouped in four categories (A, B, C and D) for practical
purposes. Finally, the global connectivity of the interaction map is analysed to tag
separately (category E) SIDs found as prey with frequency greater than a ®xed threshold:
the PBS of each protein±protein interaction involving highly connected SIDs is set to 1.
Both the intercategory thresholds and the high-connectivity threshold were de®ned
manually, taking into account the nature of the studied organism, the relevant library and
the current coverage of the proteome (A , 1e-10 , B , 1e-5 , C , 1e-2.5 , D; the E
category corresponds to prey SIDs selected with more than 4 baits and was arbitrarily
attributed a PBS value of 1).

Bioinformatics

Several algorithms and software were implemented in the production database to facilitate
experimental steps, such as a `bait program' that designed automatically oligonucleotides
for PCR ampli®cation and sequencing of bait constructs, a `prey program' that determined
the position of each fragment in the genome and its coding capacity (such as intergene,
antisense, nucleotide position in an ORF, coding frame). The interactions were then
analysed through a web-based software platform, the PIMRider developed at Hybrigenics
and accessible through the web interface (http://pim.hybrigenics.com). Academic users
will be granted a free licence. Other users will have to purchase a commercial licence. The
H. pylori PIMRider platform is linked to the PyloriGene database.
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Staphylococcus aureus is a major human pathogen, the potency of
which can be attributed to the regulated expression of an
impressive array of virulence determinants. A key pleiotropic
transcriptional regulator of these virulence factors is SarA, which
is encoded by the sar (staphylococcal accessory regulator) locus1±3.
SarA was characterized initially as an activator of a second
virulence regulatory locus, agr, through its interaction with a
series of heptad repeats (AGTTAAG) within the agr promoter4.
Subsequent DNA-binding studies have revealed that SarA binds
readily to multiple AT-rich sequences of variable lengths4±11. Here
we describe the crystal structure of SarA and a SarA±DNA
complex at resolutions of 2.50 AÊ and 2.95 AÊ , respectively. SarA
has a fold consisting of a four-helix core region and `inducible
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Figure 1 The SarA dimer and SarA±DNA complex. a, Views of SarA looking directly into

the DNA-binding pocket or from the `back' side. The secondary structures, b-hairpin and

C-terminal loop of one monomer are labelled. Each monomer is red or green. b, The

SarA±DNA complex in the identical orientation of the corresponding apo SarA directly

above. The DNA duplex is shown as CPK atoms, with carbon, nitrogen, oxygen and

phosphates coloured white, blue, red and yellow, respectively. The a4B gripper helix of

one monomer is also labelled. The narrow and deep minor groove and major groove are

seen on the left and right respectively.
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