Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast dynamo action in a steady chaotic flow

Abstract

THE observation of rapid variations in the Sun's magnetic field motivates the search for 'fast dynamos'1–3—flows of highly conducting fluid that amplify magnetic fields on the typically rapid timescales of convection, rather than the longer timescales of diffusion. Certain helical flows4–6 have been proposed as possible fast dynamos, but numerical studies7,8 of such flows have shown no conclusive evidence for this. Here I examine the evolution of a magnetic field in one such flow, which possesses a web of chaotic streamlines mingled with tubes of regular streamlines9. In the case of no magnetic diffusion, I observe intense stretching and folding of the magnetic field in the chaotic regions of the flow. The folding brings together field that is largely aligned in the same direction, and the average field in a chaotic region therefore grows exponentially with time. This provides evidence for fast dynamo action, the main effect of weak diffusion being to average the field locally10–13, and indicates that smooth, steady chaotic flows can be fast dynamos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vainshtein, S. I. & Zeldovich, Ya. B. Usp. Fiz. (SSSR) 106, 431–457 (1972): (Engl. transl.) Sov. Phys. Usp. 15, 159–172 (1972).

    Article  ADS  Google Scholar 

  2. Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983).

    Google Scholar 

  3. Moffatt, H. K. Nature 341, 285–286 (1989).

    Article  ADS  Google Scholar 

  4. Arnold, V. I. C.r. hebd. Séanc. Acad. Sci. Paris 261, 17–20 (1965).

    Google Scholar 

  5. Hénon, M. C. r. hebd. Séanc. Acad. Sci. Paris 262, 312–314 (1966).

    Google Scholar 

  6. Dombre, T. et al. J. Fluid Mech. 167, 353–391 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  7. Arnold, V. I. & Korkina, E. I. Vest. Mosk. Un. Ta. Ser. 1, Math. Mec. 3, 43–46 (1983).

    Google Scholar 

  8. Galloway, D. & Frisch, U. Geophys. astrophys. Fluid Dyn. 36, 53–83 (1986).

    Article  ADS  Google Scholar 

  9. Beloshapkin, V. V. et al. Nature 337, 133–137 (1989).

    Article  ADS  Google Scholar 

  10. Finn, J. M. & Ott, E. Phys. Fluids 31, 2992–3011 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  11. Bayly, B. J. & Childress, S. Geophys. astrophys. Fluid Dyn. 49, 23–43 (1989).

    Article  ADS  Google Scholar 

  12. Vishik, M. M. Geophys. astrophys. Fluid Dyn. 48, 151–167 (1989).

    Article  ADS  Google Scholar 

  13. Finn, J. M. & Ott, E. Phys. Fluids B2, 916–926 (1990).

    Article  MathSciNet  Google Scholar 

  14. Moffatt, H. K. Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, 1978).

    Google Scholar 

  15. Roberts, G. O. Phil. Trans. R. Soc. 271, 411–454 (1972).

    Article  ADS  Google Scholar 

  16. Bayly, B. J. & Childress, S. Geophys. astrophys. Fluid Dyn. 44, 211–240 (1988).

    Article  ADS  Google Scholar 

  17. Finn, J. M., Hanson, J. D., Kan, I. & Ott, E. Phys. Rev. Lett. 62, 2965–2968 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Otani, N. EOS Trans. Am. geophys. Un. 69 (abstr.) 1366 (1989).

    Google Scholar 

  19. Arnold, V. I., Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. Zh. Eksp. Teor. Fiz. 81, 2052–2058 (1981); (Engl. transl.) Sov. Phys. JETP 54, 1083–1086 (1981).

    Google Scholar 

  20. Soward, A. M. J. Fluid Mech. 180, 267–295 (1987).

    Article  ADS  Google Scholar 

  21. Gilbert, A. D. Geophys. astrophys. Fluid Dyn. 44, 214–258 (1988).

    Article  Google Scholar 

  22. Gilbert, A. D. & Childress, S. Phys. Rev. Lett. 65, 2133–2136 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Finn, J. M., Hanson, J. D., Kan, I. & Ott, E. Preprint UMLPR 90-015 (Univ. of Maryland, 1990).

  24. Childress, S. & Soward, A. M. in Chaos in Astrophysics (ed. Buchler, J. R. et al.) 223–244 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, A. Fast dynamo action in a steady chaotic flow. Nature 350, 483–485 (1991). https://doi.org/10.1038/350483a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350483a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing