Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding

Abstract

THE potential use of monoclonal antibodies in immunological, chemical and clinical applications has stimulated the protein engineering and expression of Fv fragments1–8, which are heterodimers consisting of the light and heavy chain variable domains (VL and VH) of antibodies. Although Fv fragments exhibit antigen binding specificity and association constants similar to their parent antibodies or Fab moieties, similarity in their interactions with antigen at the level of three-dimensional structure has not been investigated. We have determined the high-resolution crystal structure of the genetically engineered FvD1.3 fragment1 of the anti-hen egg-white lysozyme (HEL) monoclonal antibody D1.3 (ref. 9), and of its complex with HEL. On comparison with the crystallographically refined FabD1.3-HEL complex, we find that FvD1.3 and FabD1.3 make, with minor exceptions, very similar contacts with the antigen. Furthermore, a small but systematic rearrangement of the domains of FvD1.3 occurs on binding HEL, bringing the contacting residues closer to the antigen by a mean value of about 0.7 Å for VH (aligning on VL) or of 0.5 Å for VL (aligning on VH). This is indicative of an induced fit rather than a 'lock and key' fit to the antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ward, E. S., Güssow, D., Griffiths, A. O., Jones, P. T. & Winter, G. Nature 341, 544–546 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Better, M., Chang, C. P., Robinson, R. R. & Hurwitz, A. H. Science 240, 1041–1043 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Huston, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5879–5883 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Bird, R. E. et al. Science 242, 423–426 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Chaudhary, V. K. et al. Nature 339, 394–397 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Glockshuber, R., Malia, M., Pfitzinger, I. & Plückthun, A. Biochemistry 29, 1362–1367 (1990).

    Article  CAS  Google Scholar 

  7. Sastry, L. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5728–5732 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Udata, K. et al. Molec. Immun. 27, 25–35 (1990).

    Article  Google Scholar 

  9. Harper, M., Lema, F., Boulot, G. & Poljak, R. J. molec. Immun. 24, 97–108 (1987).

    Article  CAS  Google Scholar 

  10. Boulot, G. et al. J. molec. Biol. 213, 617–619 (1990).

    Article  CAS  Google Scholar 

  11. Mariuzza, R. A. et al. J. molec. Biol. 170, 1055–1058 (1983).

    Article  CAS  Google Scholar 

  12. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. & Poljak, R. J. Science 233, 747–753 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Brünger, A., Kurian, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  14. Luzzati, V. Acta crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  15. Colman, P. M. et al. Nature 326, 358–363 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Stevens, F. J., Chang, C. H. & Schiffer, M. Proc. natn. Acad. Sci. U.S.A. 85, 6895–6899 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Lascombe, M. B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 607–611 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Davies, D. R., Sheriff, S. & Padlan, E. A. J. biol. Chem. 263, 10541–10544 (1988).

    CAS  PubMed  Google Scholar 

  19. Levitt, M. & Perutz, M. F. J. molec. Biol. 201, 751–754 (1988).

    Article  CAS  Google Scholar 

  20. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  21. Jones, A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  22. Pflugrath, J. W., Saper, M. A. & Quiocho, F. A. in Methods and Applications of Crystallographic Computing (eds Hall, S. & Ashiaka, I.) 404–407 (Clarendon, Oxford, 1984).

    Google Scholar 

  23. Sheriff, S., Hendrickson, W. A. & Smith, J. L. J. molec. Biol. 197, 273–296 (1987).

    Article  CAS  Google Scholar 

  24. Tulip, W. et al. Cold Spring Harbor Symp. quant. biol. 54, 257–263 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, T., Bentley, G., Fischmann, T. et al. Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding. Nature 347, 483–485 (1990). https://doi.org/10.1038/347483a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347483a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing