Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells

Abstract

INTRACELLULAR parasites can be classified into those that reside within a host vacuole and those which grow directly in the host cytoplasm1. Members of the latter group, which includes Rickettsia2, Shigellae3, Trypanosoma cruzi4, and Listeria monocytogenes5,6, possess haemolytic activity associated with the ability to enter the host cytoplasm5–7. Therefore mutants of L. monocytogenes lacking a pore-forming haemolysin, listeriolysin O, do not escape from the endosomal compartment5,6 and consequently fail to become established in the cytoplasm5,8,9. To examine the role of listeriolysin O, we cloned the structural gene for the L. monocytogenes haemolysin, hlyA, into an asporogenic mutant of Bacillus subtilis under the control of an IPTG-inducible promoter10. After being internalized by the macrophage-like cell line J774, haemolytic B. subtilis disrupted the phagosomal membrane and grew rapidly within the macrophage cytoplasm. These results show that a single gene product is sufficient to convert a common soil bacterium into a parasite that can grow in the cytoplasm of a mammalian cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moulder, J. W. Microbiol. Rev. 49, 298–337 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Winkler, H. H. & Turco, J. Curr. Top. Microbiol. Immun. 138, 81–107 (1988).

    CAS  Google Scholar 

  3. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. Infect. Immunity 51, 461–469 (1986).

    CAS  Google Scholar 

  4. Nogueira, N. & Cohn, Z. J. exp. Med. 143, 1402–1420 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Gaillard, J. L., Berche, P., Mounier, J., Richard, S. & Sansonetti . Infect Immunity 55, 2822–2829 (1987).

    CAS  Google Scholar 

  6. Tilney, L. G. & Portnoy, D. A. J. Cell Biol. 109, 1597–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Andrews, N. W. & Whitlow, M. B. Molec. biochem. Parasit. 33, 249–256 (1989).

    Article  CAS  Google Scholar 

  8. Portnoy, D. A., Jacks, P. S. & Hinrichs . J. exp. Med. 167, 1459–1471 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn, M., Kathariou, S. & Goebel, W. Infect. Immunity 56, 79–82 (1988).

    CAS  Google Scholar 

  10. Youngman, P. et al. in Regulation of Prokaryotic Development (eds Smith, I., Slepecky, R. & Setlow, P.) 65–87. (American Society for Microbiology, Washington DC 1989).

    Google Scholar 

  11. Cossart, P. et al. Infect. Immunity 57, 3629–3636 (1989).

    CAS  Google Scholar 

  12. Geoffroy, C., Gaillard, J., Alouf, J. E. & Berche, P. Infect. Immunity 55, 1641–1646 (1987).

    CAS  Google Scholar 

  13. Havell, E. A. Infect. Immunity 54, 787–792 (1986).

    CAS  Google Scholar 

  14. Finlay, B. B. & Falkow, S. Microbiol. Rev. 53, 210–230 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smyth, C. J. & Duncan, J. L. in Bacterial Toxins and Cell Membranes (eds Jelaszewicz, J. & Wadstrom, T.) 129–183 (Academic, New York, 1978).

    Google Scholar 

  16. Zuber, P. & Losick, R. J. Bacteriol. 169, 2223–2230 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielecki, J., Youngman, P., Connelly, P. et al. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345, 175–176 (1990). https://doi.org/10.1038/345175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing