Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

Abstract

THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel–sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bray, D. & White, J. G. Science 238, 883–888 (1988).

    Article  ADS  Google Scholar 

  2. Stossel, T. P., Janmey, P. A. & Zaner, K. S. in Cytomechanics (eds Bereiter-Hahn, J., Anderson, O. R. & Reif, W. E.) 131–153 (Springer, Berlin, 1987).

    Book  Google Scholar 

  3. Stossel, T. P. J. biol. Chem. 264, 18261–18264 (1989).

    CAS  PubMed  Google Scholar 

  4. Sato, M., Schwartz, W. & Pollard, T. Nature 325, 828–830 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hill, T. L. & Kirschner, M. W. Int. Rev. Cytol. 78, 1–125 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).

    Google Scholar 

  7. Ferry, J. Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  8. Janmey, P. A. et al. Biochemistry 27, 8218–8227 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Janmey, P. A. & Stossel, T. P. J. Muscle Res. Cell Motil. 7, 446–454 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Weber, A., Northrop, J., Bishop, M. F., Ferrone, F. A. & Mooseker, M. S. Biochemistry 26, 2537–2544 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Hartwig, J. H. & Stossel, T. P. J. molec. Biol. 145, 563–581 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Zaner, K. S. J. biol. Chem. 261, 7615–7620 (1986).

    CAS  PubMed  Google Scholar 

  13. Zaner, K. S. & Hartwig, J. H. J. biol. Chem. 263, 4532–4536 (1988).

    CAS  PubMed  Google Scholar 

  14. Kwiatkowski, D. J., Janmey, P. A. & Yin, H. L. J. Cell Biol. 108, 1717–1726 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Janmey, P., Hvidt, S., Ferry, J. & Stossel, T. in Physical Networks (eds Burchard, W. & Ross-Murphy, S. B.) (Elsevier, Amsterdam, 1990).

    Google Scholar 

  16. Hvidt, S. & Janmey, P. Makromol. Chemie (in the press).

  17. Janmey, P., Amis, E. & Ferry, J. J. Rheol. 27, 135–153 (1983).

    Article  ADS  Google Scholar 

  18. Plazek, D., Vrancken, M. & Berge, J. Trans. Soc. Rheol. 2, 39–47 (1958).

    Article  Google Scholar 

  19. Kouyama, T. & Mihashi, K. Eur. J. Biochem. 114, 33–38 (1981).

    Article  CAS  PubMed  Google Scholar 

  20. Green, N. M. Biochem. J. 89, 585–591 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lodge, A. in Rheology of Elastomers (eds Mason, P. & Wooley, N.) 70–85 (Pergamon, New York, 1958).

    Google Scholar 

  23. Andrews, R., Tobolsky, A. & Hanson, E. J. appl. Phys. 17, 352–361 (1946).

    Article  ADS  CAS  Google Scholar 

  24. Hartwig, J. H. & Shevlin, P. J. Cell Biol. 103, 1007–1028 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, K. Biochemistry 16, 1857–1865 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Brotschi, E., Hartwig, J. & Stossel, T. J. biol. Chem. 253, 8988–8993 (1978).

    CAS  PubMed  Google Scholar 

  27. Spudich, J. A. & Watt, S. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  PubMed  Google Scholar 

  28. Chaponnier, C., Janmey, P. A. & Yin, H. L. J. Cell Biol. 103, 1473–1481 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janmey, P., Hvidt, S., Lamb, J. et al. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345, 89–92 (1990). https://doi.org/10.1038/345089a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345089a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing