
NEWS AND VIEWS 

Complicated measures of complexity 
The search for a means oftelling the complexity of numerical data has been urgent but frustrating. Now, there may be 
some relief in the assertion thatthere is no single measure. 

EVERYBODY wants to be able to measure 
complexity, but nobody quite knows how 
it should be done. That is the impression 
one is likely to form by skimming through 
the literature on the subject, which is 
understandably spilling out in the most 
unexpected places - mathematics journ
als, those concerned with computer 
science and communications and straight
forward physics journals as well as, inevit
ably, in Wolfram's Complex Systems. 

The issue has evidently been made 
pointed by the recent wave of interest in 
deterministic chaos. But why is it so diffi
cult? 

The essence of the problem is neatly put 
by Peter Grassberger of the University of 
Wuppertal (Int. 1. theor. Phys. 25, 907; 
1986) in these terms. Imagine three two
dimensional patterns, one of them an 
array of black and white squares as on a 
chessboard, one the now-familiar kind of 
trajectory traced out in two dimensions by 
a chaotic system - typically an intricate 
pattern of nearly periodic orbits grouped 
together into whorling shapes - and the 
third simply a random pattern of dots. 
Both the first and the third are inherently 
simple. A few simple rules will help one to 
construct a chequerboard, while a random 
pattern may need even fewer rules. The 
chaotic pattern, on the other hand, can be 
reproduced only by simulating the system 
that generates it. Intuitively, it is by far the 
most complex. But this is not what the 
numbers say, or at least some of them. 

To the extent that many measures of 
complexity boil down to specifying the 
information content of a pattern, they 
turn out to be the equivalents of entropy. 
And entropy, of course, is greatest for 
disordered systems. The entropy of the 
random pattern is thus greater than that 
of the chaotic pattern, which in turn is 
greater than that of the chequerboard. 
Such measures of complexity, including 
those derived from Shannon's theory of 
communications systems, all give pride of 
place to the random pattern of dots, which 
offends expectation. 

The standard answer may be counter
intuitive, but the antecedents of this 
question are interesting in themselves. To 
make progress, one needs a way of gen
erating patterns with more or less com
plexity. To make life simple, it is best to 
begin with one-dimensional patterns 
when, 'without loss of generality' as they 
say, one can conveniently think of a pat
tern as consisting of an infinite string of 
symbols which may, to suit the computers, 
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be either '0' or '1'. To begin with, one 
needs a way of generating such patterns. 

Grassberger's article turns out to be a 
neat and intriguing review of much that 
has been done to define measures of com
plexity. It is intriguing that he quotes two 
essays in biology - an attempt to define 
the most economical taxonomic tree, and 
to describe life mathematically - as part 
of the inspiration of his own account. (The 
second of these authors, G. 1. Chaitin, is 
cited as the source of an interesting view 
on the meaning of randomness in a piece 
of Scientific Correspondence we shall be 
publishing next week.) 

Constructing symbol strings with simple 
structure is easy. By alternating 'O's and 
'1 's, one generates simple strings such as 
'01010101...'. Generating more complex 
patterns requires more ingenuity - one 
might wish to generate patterns in which 
the sequence ' ... 111...' never appears, 
for example. That, it turns out, can 
be done by constructing an appropriate 
directed graph, which is nothing more 
than a set of points (nodes) on a plane 
which are joined to their neighbours by 
lines which carry arrows to show the direc
tion in which movement is permitted. 
Each line is also marked by one of the 
symbols making up the string, either '0' or 
'1'. The rule is to find the starting point 
(which may have only two arrows leading 
away from it), to flip a coin at each node at 
which one arrives and to take as the next 
symbol in the growing string the symbol 
on the line chosen as a consequence. 

Take a simple square, for example, with 
all the arrows following in the same direc
tion, but with 'O's and 'l's alternating 
around the square. The sequence gener
ated is simply '010101...' with an appro
priate choice of corner at which to start. 
But if one adds a single diagonal from the 
same corner, but carrying the symbol '1', 
sequences such as '0101' and '101' will be 
mixed in the string at random. Much more 
complicated patterns can easily be gener
ated. The connection with chaotic systems 
can be made direct by using a generating 
function, of the kind that chaos-mongers 
live and breathe - something such as X;+l 

= f(x). The idea is that this equation is a 
way of indefinitely remapping the points 
in some interval of the x axis onto the 
same straight line. 

The practitioners in chaos are usually 
more interested in mapping some finite 
interval - say that between 0 and 1 -
onto itself, which is convenient for pattern 
generation because it is then possible to 

assign to X;+! the value '0' if it is less than 
0.5 and the value '1' if it is 0.5 or greater. 

One of the most intriguing features that 
keeps cropping up in this literature of 
pattern formation and analysis is that 
there are repeated references to Noam 
Chomsky, who is largely responsible for 
putting the grammar of language on a 
logical basis. The reason is straight
forward - strings of two symbols with 
restrictions, such as ' ... 111... is dis
allowed' can be linked to strings of letters, 
or words, and the restrictions to the rules 
of grammar. Indeed the set of all the algor
ithms by which the patterns are generated 
becomes the set of all the rules of an infinite 
set of grammars. In language, the absorb
ing question is the degree to which rules 
like these represent real language. 

That may seem a diversion, but it is an 
important one. Another is with the theory 
of computation and the Turing machine, 
which is a way of relating the complexity 
of a computational last to the characteris
tics of the ideal computer required to carry 
it out. 

Grassberger, for what it is worth, 
defines four measures of complexity for 
strings like these, of which he says he 
believes the most relevant for physical 
problems is that called effective measure 
complexity. He goes on to show that the 
definition allows for the complexity to be 
infinite which the entropy is zero. 

But now, it seems, a more radical view 
has come to the surface. G. d'Alessandro 
and A. Politi of the Instituto Nazionale di 
Ottica at Florence have made a direct 
attack on the difficulty that random pat
terns are assigned great numerical com
plexity by a quite novel procedure (Phys. 
Rev. Lett. 64, 1609; 1990). 

What they imagine is that the complex
ity of a string will eventually be measured 
by a hierarchy of numbers, the first of 
which is akin to an entropy and defined 
as the logarithm of the number of admis
sible sequences (given the grammar) of 
length n divided by n as the numbers 
become very large. But why not do the 
same for the forbidden words, deriving a 
second measure in exactly the same way? 
Out of that definition tumbles directly the 
notion that the complexity of a random 
string is identically zero. Their next task is 
to generalize the argument to several 
dimensions. One is naturally left wonder
ing why it should ever have been thought 
that there could be a single number mea
suring complexity ofvery different kinds. 

John Maddox 
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