LETTERS TO NATURE

TABLE 1 Steady-state kinetic parameters of wild-type and mutant PFK									
	Forward reaction					Reverse reaction			
	k _{cat} (s ⁻¹)	K _{m[Fru6P]} (µM)	К _{т[АТР]} (µМ)	S _{1/2} (μΜ)	n _H	k_{cat} (s ⁻¹)	κ _{m[ADP]} (μΜ)	S _{1/2[Fru1.6P2]} (mM)	n _H
Wild type	134	30	63	540	4	22	52	1.9	h
RS162	95	4,950	42	3,700	2.1	5	124	28.1	2.0
RS243	186	1,600	26	16,000	2.7	8.9	41	13.0	2.0
RS72	4	96	75	700	2.2	1.5	56	39.5	h

PFK catalyses the phosphorylation of Fru6P to Fru1,6P2 by ATP. The enzyme from Escherichia coli (PFK-1; EC 2.7.1.11) is a tetramer and shows positive cooperativity with respect to Fru6P, allosteric activation by ADP or GDP, and allosteric inhibition by phosphoenopyruvate (PEP). S1/2, Fru6P concentration at half-maximal velocity in the absence of GDP; n_{H} , Hill constant determined from fitting kinetic data to $V = V_{max}(S_{1/2}^2 + S^n)/S^n$; k_{cat} values were measured at saturating concentrations of both substrates and in the presence of 1 mM GDP. Catalysis in the wild-type enzyme is probably rate-limited by the phosphoryl transfer step⁸, although this has not been determined. $K_{m[FruGP]}$ values were measured in the presence of 1 mM GDP. $K_{m[ATP]}$ values were obtained at saturating values of Fru6P. GDP was not included for these measurements as it acts as a competitive inhibitor for ATP. Reverse reaction kinetics for both wild type and RS72 are hyperbolic (h). Their K_{m(Fru1.6P2} is equal to S_{1/2}. Arg-to-Ser mutations were chosen to eliminate the electrostatic interactions of these residues while still maintaining the polar character of the region. Mutants were produced using oligonucleotide-directed mutagenesis9. Wild-type and mutant enzymes were expressed from the plasmid pHL1¹⁰ in *E. coli* strain DF1020, which is deleted for both PFK genes¹¹. Enzymes were purified using a blue A column (Amicon)¹² and Sephacryl S-200 gel filtration chromatography (Pharmacia)⁸. In the forward direction, enzyme activity was measured at 25 °C, pH 8.0, in 100 mM Tris-HCl, 10 mM dithiothreitol, 10 mM MgCl₂, 10 mM NH₄Cl by coupling Fru1,6P₂ production to the oxidation of NADH⁸. Reverse reaction activity was measured as for the forward reaction, except the production of Fru6P was coupled to the reduction of NADP as described¹². Coupling enzymes and substrates were from Boehringer Mannheim. Kinetic parameters were obtained by fitting data to either Michaelis-Menten or Hill equations using the Enzfitter program (R. Leatherbarrow, personal communication). Measurements are the averages of at least three determinations.

FIG. 2 Reverse reaction kinetics for wild-type, RS162 and RS243 enzymes. , Wild type; O, RS243; , RS162. Curves represent best fits to Michaelis-Menten (wild type) or Hill (RS162 and RS243) equations, the parameters of which are given in Table 1.

Arg 72 and Glu 241 in the R state of these mutants may be responsible for this, but structural analysis will be required to verify this hypothesis.

In summary, electrostatic interactions between Arg 162, Arg 243 and the 6-phosphate of Fru6P bound to the neighbouring subunit stabilize the R state of PFK, whereas in the absence of Fru6P, a salt bridge between Arg 72 and Glu 241 of the neighbouring subunit stabilizes the T-state conformation. These

Received 22 August; accepted 21 December 1989

- 1. Evans, P. R. & Hudson, P. J. Nature 279, 500-504 (1979)
- Evans, P. R., Farrants, G. W. & Hudson, P. J. Phil. Trans. R. Soc. B293, 53-62 (1981).
- Evans, P. R., Farrants, G. W. & Lawrence, M. C. J. molec. Biol. **191**, 713–720 (1986). Shirakihara, Y. & Evans, P. J. molec. Biol. **204**, 973–994 (1988). 3
- 5 Schirmer, T. & Evans, P. R. Nature 343, 140-145 (1990)
- 6 Blangy, D., Buc, H. & Monod, J. J. molec. Biol. 31, 13-35 (1968).
- Monod, J., Wyman, J. & Changeux, J. P. J. molec. Biol. 12, 88-118 (1965). Hellinga, H. W. & Evans, P. R. Nature 327, 437-439 (1987).
- Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468-500 (1983) 9
- 10. Lau, F., K.-T., Fersht, A. R., Hellinga, H. W. & Evans, P. R. Biochemistry 26, 4143-4148 (1987).
- 11. Daldal, F. J. molec. Blol. 168, 285-305 (1983).
- 12. Kotlarz, D. & Buc, H. Meth. Enzym. 90, 60-70 (1982).
- 13. French, B. A. & Chang, S. H. Gene 54, 65-71 (1987).

ACKNOWLEDGEMENTS. We thank M. F. Perutz, T. Schirmer and C. E. Kundrot for discussions. S.A.B. was supported by a fellowship from the M.R.C. of Canada

active-site arginines therefore play critical roles in the communication of cooperative and allosteric signals between subunits, particularly Arg 162, which performs the largest movement between the T- and R-state configurations.

ERRATUM

Volatiles in submarine glasses as a discriminant of tectonic origin: application to the Troodos ophiolite

D. W. Muenow, M. O. Garcia, K. E. Aggrey, U. Bednarz & H. U. Schmincke

Nature 343, 159-161 (1990)

THE figure legend to Fig. 1 of this letter was omitted and a legend from another paper used in error. The figure is shown below with the correct legend.

FIG. 1 K_2O plotted against H_2O for unaltered submarine volcanic glasses from known tectonic environments. MORB-field (O) (Mid-Atlantic Ridge¹³, East Pacific Rise¹⁴, Galapagos^{15,16}); BAB-field (●) (Mariana Trough¹², Scotia , Fiji/Lau¹⁸ and Woodlark basins¹⁹); OIB field (\triangle) (Hawaii^{9–11}); Arc field Sea17 (A) (Mariana island arc¹²); Troodos (×) (this study). Note that MORB, BAB and Troodos fields have K₂O/H₂O < 0.70.