Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of interfacial atomic steps during silicon oxidation

Abstract

SILICON oxidation is perhaps the most common process in the fabrication of electronic devices. The silicon/silicon dioxide inter-face has excellent electrical properties which are employed in field-effect devices and surface passivation, and are arguably responsible for the dominance of silicon technology in the micro-electronics industry. As device dimensions shrink, the need for high-quality oxides grown at increasingly lower thicknesses and temperatures has demanded ever more perfect, extremely flat Si/SiO2 interfaces. Here we use transmission electron microscopy to image exposed and buried monatomic interfacial steps at the Si/SiO2 interface during oxidation. The results show that extremely flat boundaries can be formed at low temperatures and that atomic steps do not play a dominant role in the oxidation process itself. A simple bulk-terminated Si/amorphous SiO2 inter-face is consistent with our data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goodnick, S. M. et al. Phys. Rev. B 32, 8171–8185 (1985).

    Article  CAS  Google Scholar 

  2. Hahn, P. O. & Henzler, M. J. Vac. Sci. Technol. A 2, 574–583 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Aspnes, D. E. & Theeten, J. B. J. electric. Soc. 127, 1359–1365 (1980).

    Article  CAS  Google Scholar 

  4. Jackman, T. E., McDonald, J. R., Feldman, L. C., Silverman, P. J. & Stensgaard, I. Surf. Sci. 100, 35–42 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Hollinger, G. & Himpsel, F. J. Appl. Phys. Lett. 44, 93–95 (1983).

    Article  ADS  Google Scholar 

  6. Grunthaner, P. J., Hecht, M. H., Grunthaner, F. J. & Johnson, N. M. J. appl. Phys. 61, 629–638 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Grovenor, C. R. M. Mat. Res. Soc. Proc. 53, 301–310 (1986).

    Article  CAS  Google Scholar 

  8. Ourmazd, A., Taylor, D. W., Rentschler, J. A. & Bevk, J. Phys. Rev. Lett. 59, 213–216 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Cherns, D. Phil. Mag. 30, 549–556 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Krakow, W. & Ast, D. G. Surf. Sci. 58, 485–496 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Andrews, S. R. & Cowley, R. A. J. Phys. C 18, 6427–6439 (1985).

    ADS  CAS  Google Scholar 

  12. Robinson, I. K., Waskiewicz, W. K., Tung, R. T. & Bohr, J. Phys. Rev. Lett. 57, 2714–2717 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Iijima, S. Ultramicroscopy 6, 41–52 (1981).

    Article  CAS  Google Scholar 

  14. Ourmazd, A., Anstis, G. R. & Hirsch, P. B. Phil. Mag. A 48, 139–153 (1983).

    Article  CAS  Google Scholar 

  15. Alexander, H., Spence, J. C. H., Shindo, D., Gottschalk, H. & Long, N. Phil. Mag. A 53, 627–643 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Gibson, J. M., Elser, V. & Lanzerotti, M. Y. Appl. Phys. Lett. (submitted).

  17. Carim, A. H., Dovek, M. M., Quate, C. F., Sinclair, R. & Vorst, C. Science 237, 630–633 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Grunder, M. & Schulz, R. J. Vac. Sci. Technol. (in the press).

  19. Becker, R. S., Swartzentruber, B. S., Vickers, J. S., Hybertson, M. S. & Louie, S. G. Phys. Rev. Lett. 60, 116–119 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Ross, F. M. & Stobbs, W. M. Mat. Res. Soc. Proc. 105, 259–264 (1988).

    Article  CAS  Google Scholar 

  21. Mott, N. F. Proc. R. Soc. A 376, 207–215 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Mazur, J. H. & Washburn, J. Am. Inst. Phys. Conf. Ser. 122, 52–55 (1984).

    ADS  CAS  Google Scholar 

  23. Shimizu, N., Tanishiro, Y., Kobayashi, K., Takayanagi, K. and Yagi, K. Ultramicroscopy 18, 453–462 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, J., Lanzerotti, M. Observation of interfacial atomic steps during silicon oxidation. Nature 340, 128–131 (1989). https://doi.org/10.1038/340128a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340128a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing