Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geminga and the search for optical counterparts of γ-ray-burst sources

Abstract

THE nature of gamma-ray-burst (GRB) sources has remained a mystery, in part because of the lack of any optical identification. Recently, deep CCD photometry has identified the optical counterpart G″ to the γ-ray source Geminga, whose location on a colour-magnitude diagram is unique1. Although the X-rays from G″ are probably due to thermal emission from the neutron star, the implied column density ( 5 x 1020) is inconsistent with the distance (D < 100 pc) required to fit the optical flux to the same spectral component. Here I show that the optical emission could be due instead to a cold accretion disk with accretion rate Ṁ ≈ 1011 g s−1. This has promising implications for the search for the optical counterparts to GRB sources whose basic physical parameters may resemble those of radio pulsars and related objects such as Geminga. I argue that a similar search in the field of a GRB location should produce candidates similar to G″ if 20 pc DGRB 500 pc, as predicted by the disk-reprocessing model for the associated optical transients. This possibility is discussed in the light of the fact that the first optical counterpart to a GRB source may already have been found, which, if it is confirmed, may be used to test the accretion-disk model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Halpern, J. P. & Tytler, D. Astrophys. J. 330, 201–217 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Liang, E. P. & Petrosian, V. AIP Conf. Proc. (AIP, New York, 1986).

    Google Scholar 

  3. Mazets, E. P. et al. Nature 290, 378–380 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Hueter, G. J. High Energy Transients in Astrophysics (ed. Woosley, S. E.) 373–377 (AIP, New York, 1984).

    Google Scholar 

  5. Murakami, T. et al. Nature 335, 234–235 (1988).

    Article  ADS  Google Scholar 

  6. Melia, F. Astrophys. J. 334, L9–L12 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Melia, F. Nature 336, 658–660 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Fenimore, E. E. et al. Astrophys. J. (submitted).

  9. Helfand, D. J. & Vrtilek, S. D. Nature 304, 41–43 (1983).

    Article  ADS  Google Scholar 

  10. Michel, F. C. Astrophys. J. 290, 721–727 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Katz, J. I. Astrophys. Lett. 24, 183 (1985).

    ADS  Google Scholar 

  12. Ruderman, M. A. 13th Texas Symp. on Relativistic Astrophysics (ed. Ulmer, M. P.) 448–459 (World Scientific, Singapore, 1987).

    Google Scholar 

  13. Schaefer, B. E. Adv. Space Res. 6, 47 (1987).

    Article  ADS  Google Scholar 

  14. Melia, F. Astrophys. J. 324, L21–L25 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Smith, F. G. Pulsars (Cambridge Univ. Press, 1977).

    Google Scholar 

  16. Matz, S. M. et al. Astrophys. J. 288, L37–L40 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Kouveliotou, C. Astrophys. J. 330, L101–L105 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Manchester, R. N. & Taylor, J. H. Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  19. Melia, F. Astrophys. J. 335, 965–970 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Bignami, G. F. et al. Astrophys. J. 319, 358–361 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Romani, R. Astrophys. J. (in the press).

  22. Michel, F. C. & Dessler, A. J. Astrophys. J. 251, 654–664 (1981).

    Article  ADS  Google Scholar 

  23. Kafka, P. & Meyer, F. High Energy Transients in Astrophysics (ed. Woosley, S. E.) 578–580 (AIP, New York, 1984).

    Google Scholar 

  24. Epstein, R. I. Astrophys. J. 291, 822–833 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Melia, F., Rappaport, S. & Joss, P. C. Astrophys. J. 305, L51–L55 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Melia, F. Proc. Sofia COSPAR Symp. (ed. White, N.) 641–652 (1988).

    Google Scholar 

  27. Helfand, D. J. et al. Nature 283, 337–343 (1980).

    Article  ADS  Google Scholar 

  28. Schaefer, B. E. Nature 302, 43–45 (1981).

    Article  ADS  Google Scholar 

  29. Pedersen, H. et al. Astrophys. J. 270, L43–L47 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Schaefer, B. E. et al. Astrophys. J. 270, L49–L52 (1983).

    Article  ADS  Google Scholar 

  31. Boer, M. et al. Astr. Astrophys. 202, 117–123 (1988).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melia, F. Geminga and the search for optical counterparts of γ-ray-burst sources. Nature 338, 322–324 (1989). https://doi.org/10.1038/338322a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338322a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing