Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new strategy for the generation of catalytic antibodies

Abstract

THE high binding affinity and specificity of antibodies for a wide range of ligands has recently been exploited in the generation of catalysts for acyl-transfer reactions1–7, carbon-carbon bond forming8,9 and carbon-carbon bond cleaving reactions10. In addition, a number of strategies are emerging for the generation of catalytic antibodies including transition state stabilization1–6, catalysis by approximation7,8, and the introduction of catalytic groups or cof ac-tors into antibody combining sites10–13. An important goal in the design of catalytic antibodies is the development of general rules relating hapten structure to the corresponding catalytic groups in the antibody combining site. We report here that electrostatic interactions between a hapten and the complementary antibody14,15 can be exploited to generate catalytic amino-acid side chains in an antibody-combining site. The antibody-catalysed reaction, a β-elimination reaction, exhibits saturation kinetics, substrate specificity, competitive inhibition by hapten, and specific inactivation by a reagent that modifies carboxylate residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollack, S., Jacobs, J. & Schultz, P. G. Science 234, 1570–1573 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Tramantano, A., Janda, K. D. & Lerner, R. A. Science 234, 1566–1570 (1986).

    Article  ADS  Google Scholar 

  3. Jacobs, J., Schultz, P. G., Sugasawara, R. & Powell, M. J. Am. chem. Soc. 109, 2174–2176 (1987).

    Article  CAS  Google Scholar 

  4. Napper, A. D., Benkovic, S. J., Tramantano, A. & Lerner, R. A. Science 237, 1041–1043 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Janda, K. D., Schloeder, D., Benkovic, S. J. & Lerner, R. A. Science 241, 1188–1191 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Schultz, P. G. Science 240, 426–433 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Benkovic, S. J., Napper, A. D. & Lerner, R. A. Proc. natn. Acad. Sci. U.S.A. 85, 5355–5358 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Jackson, D. Y. et al. J. Am. chem. Soc. 110, 4841–4842 (1988).

    Article  CAS  Google Scholar 

  9. Hilvert, D. & Nared, K. D. J. Am. chem. Soc. 110, 5593–5594 (1988).

    Article  CAS  Google Scholar 

  10. Cochran, A. G., Sugasawara, R. & Schultz, P. G. J. Am. chem. Soc. 110, 7888–7890 (1988).

    Article  CAS  Google Scholar 

  11. Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Angew. Chem. intl. Edn Engl. 27, 1172–1174 (1988).

    Article  Google Scholar 

  12. Pollack, S., Nakayama, G. & Schultz, P. G. Science 242, 1038–1040 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Pollack, S. & Schultz, P. G. J. Am. chem. Soc. (in the press).

  14. Grossberg, A. L. & Pressman, D. J. Am. Chem. Soc. 82, 5478–5482 (1960).

    Article  CAS  Google Scholar 

  15. Pressman, D. & Grossberg, A. L. in The Structural Basis of Antibody Specificity 166–174 (Benjamin, New York 1968).

    Google Scholar 

  16. Schrag, K. J., O'Connell, E. L. & Rose, I. A. J. biol. Chem. 248, 2214–2218 (1973).

    Google Scholar 

  17. Banner, D. W. et al. Nature 255, 609–614 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Miziorko, H. M. & Lane, M. D. J. biol. Chem. 252, 1414–1420 (1977).

    CAS  PubMed  Google Scholar 

  19. Parsons, S. M. & Raferty, M. A. Biochemistry 11, 1623–1633 (1972).

    Article  CAS  Google Scholar 

  20. Lauer, R. C., Soloman, P. H., Nakanishi, K. & Erlanger, B. F. Experientia 30, 560–562 (1974).

    Article  CAS  Google Scholar 

  21. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Spratt, T. E. & Kaiser, E. T. J. Am. chem. Soc. 106, 6440–6442 (1984).

    Article  CAS  Google Scholar 

  23. Fersht, A. R. & Renard, M. Biochemistry 13, 1416–1426 (1974).

    Article  CAS  Google Scholar 

  24. Habeeb, A. F. S. A. Analyt. Biochem. 14, 328–336 (1966).

    Article  CAS  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275.

  26. Dixon, G. Biochemistry, J. 55, 170–172 (1953).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokat, K., Leumann, C., Sugasawara, R. et al. A new strategy for the generation of catalytic antibodies. Nature 338, 269–271 (1989). https://doi.org/10.1038/338269a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338269a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing