Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients

Abstract

Calcium is transported across the surface membrane of both nerve1, 2 and muscle3 by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange4–7, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:l Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:l Ca2+1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+1:1 Ca2+ exchange.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baker, P. F. Blaustein, M. P., Hodgkin, A. L. & Steinhardt, R. A. J. Physiol. 200, 431–458 (1969).

    Article  CAS  Google Scholar 

  2. Blaustein, M. P. & Hodgkin, A. L. J. Physiol. 200, 497–527 (1969).

    Article  CAS  Google Scholar 

  3. Reuter, H. & Seitz, N. J. Physiol. 195, 451–470 (1968).

    Article  CAS  Google Scholar 

  4. Yau, K.-W. & Nakatani, K. Nature 311, 661–663 (1984).

    Article  ADS  CAS  Google Scholar 

  5. McNaughton, P. A., Cervetto, L. & Nunn, B. J. Nature 322, 261–263 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol. 391, 347–370 (1987).

    Article  CAS  Google Scholar 

  7. Lagnado, L., Cervetto, L. & McNaughton, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 4548–4552 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Reeves, J. P. & Hale, C. C. J. biol. Chem. 259, 7733–7739 (1984).

    CAS  PubMed  Google Scholar 

  9. Hodgkin, A. L. & Nunn, B. J. J. Physiol. 391, 371–398 (1987).

    Article  CAS  Google Scholar 

  10. Baylor, D. A., Matthews, G. & Nunn, B. J. J. Physiol. 354, 203–224 (1984).

    Article  CAS  Google Scholar 

  11. Torre, V. J. Physiol. 333, 315–341 (1982).

    Article  CAS  Google Scholar 

  12. Lolley, R. N. & Racz, E. Vision Res. 22, 1481–1486 (1982).

    Article  CAS  Google Scholar 

  13. Koch, K.-W. & Stryer, L. Nature 334, 64–66 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol. 358, 447–468 (1985).

    Article  CAS  Google Scholar 

  15. Schnetkamp, P. P. M. J. Physiol. 373, 25–45 (1986).

    Article  CAS  Google Scholar 

  16. Gadsby, D. C., Nakao, M., Noda, M. & Shepherd, R. N. J. Physiol. 407, 135P (1988).

    Article  Google Scholar 

  17. Allen, T. J. A. & Baker, P. F. J. Physiol. 378, 53–76 (1987).

    Article  Google Scholar 

  18. DiPolo, R. & Rojas, H. Biochim. biophys. Acta 776, 313–316 (1984).

    Article  CAS  Google Scholar 

  19. Schnetkamp, P. P. M., Szerencsei, R. T. & Basu, D. K. Biophys. J. 53, 389a (1988).

    Google Scholar 

  20. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 395, 6–18 (1981).

    Google Scholar 

  21. Spencer, M., Detwiler, P. B. & Bunt-Milam, A. H. Invest. Opthalmol. Vis. Sci. 29, 1012–1020 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervetto, L., Lagnado, L., Perry, R. et al. Extrusion of calcium from rod outer segments is driven by both sodium and potassium gradients. Nature 337, 740–743 (1989). https://doi.org/10.1038/337740a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337740a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing