Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of the Antarctic ozone hole by the CIO dimer mechanism

Abstract

The discovery in 1986 of an extremely large concentration (1 part per 109) of chlorine monoxide (CIO) at low altitudes in the spring stratosphere over Antarctica1,2, and measurements showing the formation of OC1O at night3, provided strong evidence that the evolution of the Antarctic ozone 'hole9 is chemically driven by chlorine. Here we use new measurements4 of the low-altitude CIO profile, made during September 1987, along with detailed observa-tions of ozone depletion5 over McMurdo Station during the same period, to show that both the rate and altitude range of ozone depletion can be quantitatively accounted for by a mechanism in which the CIO dimer6 is the important intermediary in the catalytic destruction of ozone. An alternative bromine mechanism appears capable of contributing only 5–15% to the ozone loss rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Zafra, R. L. et al. Nature 328, 408–411 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Solomon, P. M. et al. Nature 328, 411–413 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Solomon, S., Mount, G. H., Sanders, R. W. & Schmeltekopf, A. L. J. geophys. Res. 92, 8329–8338 (1987).

    Article  ADS  CAS  Google Scholar 

  4. De Zafra, R. L. et al. J. geophys. Res. (in the press).

  5. Hofmann, D. J., Harder, J. W., Rosen, J. M., Hereford, J. V. & Carpenter, J. R. J. geophys. Res. (in the press).

  6. Molina, L. T. & Molina, M. J. J. phys. Chem. 91, 433–436 (1987).

    Article  CAS  Google Scholar 

  7. Molina, M. & Rowland, F. S. Nature 249, 810–814 (1974).

    Article  ADS  CAS  Google Scholar 

  8. McElroy, M. B., Salawitch, R. J., Wofsy, S. F. & Logan, J. A. Nature 321, 759–762 (1986).

    Article  ADS  CAS  Google Scholar 

  9. McKenzie, R. L. & Johnson, P. V. Geophys. Res. Lett. 11, 73–75 (1984).

    Article  ADS  CAS  Google Scholar 

  10. McCormick, M. P. & Larsen, J. C. Geophys. Res. Lett. 13, 1280–1283 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Mount, G. H., Sanders, R. W., Schmeltekopf, A. L. & Solomon, S. J. geophys. Res. 92, 8320–8328 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Farmer, C. B., Toon, G. C., Schaper, P. W., Blairer, J.-F. & Lowes, L. L. Nature 329, 126–130 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Twomey, S., Herman, B. & Rabinoff, R. J. atmos. Sci. 34, 1085–1090 (1977).

    Article  ADS  Google Scholar 

  14. Atmospheric Ozone 1985 (Rep. No. 16 of the WMO Global Ozone Research and Monitoring Project) (World Meteorological Organization, 1986).

  15. Cox, R. A. & Hayman, G. D. Nature 332, 796–800 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Solomon, S., Sanders, R. W., Carroll, M. A. & Schmeltekopf, A. I. J. geophys. Res. (in the press).

  17. Hofmann, D. J., Rosen, J. M., Harder, J. W. & Hereford, J. V. J. geophys. Res. (in the press).

  18. Hayman, G. D., Davies, J. M. & Cox, R. A. Geophys. Res. Lett. 13, 1347–1350 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Anderson, J. G. et al. J. geophys. Res. (in the press).

  20. Sanders, R. W., Solomon, S., Carroll, M. A. & Schmeltekopf, A. L. J. geophys. Res. (in the press).

  21. Carroll, M. A., Sanders, R. W., Solomon, S. & Schmeltekopf, A. L. J. geophys. Res. (in the press).

  22. Sander, S. P. & Watson, R. T. J. phys. Chem. 85, 4000–4007 (1981).

    Article  CAS  Google Scholar 

  23. Brune, W. H. & Anderson, J. G. J. geophys. Res. (in the press).

  24. Hills, A. J., Cicerone, R. J., Calvert, J. G. & Birks, J. W. Nature 328, 405–408 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Sander, S. P. & Friedl, R. R. Geophys. Res. Lett. 15, 887–890 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, J., Solomon, P., de Zafra, R. et al. Formation of the Antarctic ozone hole by the CIO dimer mechanism. Nature 336, 455–458 (1988). https://doi.org/10.1038/336455a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336455a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing