Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cytoskeletal spring in cochlear outer hair cells

Abstract

Normal hearing in mammals depends on an active mechanical filter, within the cochlea, which separates different sound frequencies before neural encoding. Experiments on the intact cochlea1—4 indicate that the critical cellular components underlying the process are probably the outer hair cells5,6 which are strategically placed to influence movement of the basilar membrane. This idea is attractive because isolated cells can generate axial forces7 at acoustic frequencies8 when electrically stimulated. The mechanical properties of cells are largely determined by structures closely associated with the plasma membrane9,10. We show here, using light and electron microscopy, that beneath this membrane lies a lattice of crosslinked circumferential filaments which are pitched at a mean angle of 15° to the transverse axis of the cell. The lattice is sufficient to retain the shape of the cell following demembranation and mechanical deformation. The structure of the lattice allows it to be described as a coiled helical spring but with longitudinal stiffness primarily determined by the crosslinks. Direct measurements of longitudinal stiffness reported here indicate that the lattice contributes 5–10% of the stiffness. We propose that the 'circumferential lattice' ensures that outer hair cells can act as directed force generators within the organ of Corti, a prerequisite in current descriptions of cochlear micro-mechanics11–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Khanna, S. M. & Leonard, D. Science 215, 305–306 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Mountain, D. C. Science 210, 71–72 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Evans, E. F. & Harrison, R. V. J. Physiol., Lond. 256, 43–44P (1976).

    Google Scholar 

  4. Brown, M. C. & Nuttall, A. J. J. Physiol., Lond. 354, 625–646 (1984).

    Article  CAS  Google Scholar 

  5. Davis, H. Hearing Res. 9, 79–90 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Kim, S. O. Hearing Res. 22, 105–114 (1986).

    Article  CAS  Google Scholar 

  7. Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Science 227, 194–196 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Ashmore, J. F. J. Physiol., Lond. 388, 323–347 (1987).

    Article  CAS  Google Scholar 

  9. Holley, M. C. & Ashmore, J. F. Proc. R. Soc. B232, 413–429 (1988).

    ADS  Google Scholar 

  10. Flock, A., Flock, B. & Ulfendahl, M. Archs Otorhinolaryng. 243, 83–90 (1986).

    Article  CAS  Google Scholar 

  11. Mountain, D. C., Hubbard, A. E. & McMullan, T. A. in The Mechanics of Hearing (eds de Boer, E. : Viergever, M.) 119–126 (Nijhof Delft, 1985).

    Google Scholar 

  12. Neely, S. R. & Kim, D. O. J. acoust. Soc. Am. 79, 1472–1480 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Geisler, C. D. Hearing Res. 24, 125–132 (1986).

    Article  CAS  Google Scholar 

  14. Fey, E. G., Wan, K. & Penman, S. J. Cell Biol. 98, 1973–1984 (1984).

    Article  CAS  Google Scholar 

  15. Howard, J. & Ashmore, J. F. Hearing Res. 23, 93–104 (1986).

    Article  CAS  Google Scholar 

  16. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 364, 359–380 (1985).

    Article  CAS  Google Scholar 

  17. Ashmore, J. F. J. Physiol., Lond. 364, 4P (1985).

    Google Scholar 

  18. Saito, K. Cell Tissue Res. 229, 467–481 (1983).

    Article  CAS  Google Scholar 

  19. Bannister, L. H., Dodson, H. C., Astbury, A. F. & Douek, E. E. Prog. Brain Res. 74, 213–219 (1988).

    Article  CAS  Google Scholar 

  20. Slepecky, N., Ulfendahl, M. & Flock, A. Hearing Res. 32, 11–22 (1988).

    Article  CAS  Google Scholar 

  21. Slepecky, N., Ulfendahl, M. & Flock, A. in Basic Issues in Hearing (eds Duifhuis, H. J. & de Wit, H.) 49–55 (Academic, London, 1988).

    Google Scholar 

  22. Liu, S. C. & Palek, J. Nature 285, 586–588 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Wahl, A. M. Mechanical Springs (McGraw-Hill, New York, 1963).

    Google Scholar 

  24. Vincent, J. F. Structural Biomaterials (Macmillan, London, 1982).

    Book  Google Scholar 

  25. Gummer, A. W. & Johnstone, B. M. J. acoust. Soc. Am. 70, 1298–1309 (1981).

    Article  ADS  Google Scholar 

  26. Miller, C. E. J. acoust. Soc. Am. 77, 1465–1474 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holley, M., Ashmore, J. A cytoskeletal spring in cochlear outer hair cells. Nature 335, 635–637 (1988). https://doi.org/10.1038/335635a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335635a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing