Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions

Abstract

Visual excitation in retinal rod cells is mediated by a cascade that leads to the amplified hydrolysis of cyclic GMP (cGMP) and the consequent closure of cGMP-activated cation-specific channels in the plasma membrane1–3. Recovery of the dark state requires the resynthesis of cGMP, which is catalysed by guanylate cyclase, an axoneme-associated enzyme4–6. The lowering of the cytosolic calcium concentration (Cai) following illumination7–10 is thought to be important in stimulating cyclase activity11,12. This hypothesis is supported by the finding that the cGMP content of rod outer segments increases several-fold when Cai is lowered to less than 10 nM13–16. It is evident that cGMP and Cai levels are reciprocally controlled by negative feedback1,2. Guanylate cyclase from toad ROS is strongly stimulated when the calcium level is lowered from 10 μM to 10 nM, but only if they are excited by light17. We show here that the guanylate cyclase activity of unilluminated bovine rod outer segments increases markedly (5 to 20-fold) when the calcium level is lowered from 200 nM to 50 nM. This steep dependence of guanylate cyclase activity on the calcium level in the physiological range has a Hill coefficient of 3.9. Stimulation at low calcium levels is mediated by a protein that can be released from the outer segment membranes by washing with a low salt buffer. Calcium sensitivity is partially restored by adding the soluble extract back to the washed membranes. The highly cooperative activation of guanylate cyclase by the light-induced lowering of Cai is likely to be a key event in restoring the dark current after excitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pugh, E. N. Jr & Cobbs, W. H. Vision Res. 26, 1613–1643 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Stryer, L. A. Rev. Neurosci. 9, 87–119 (1986).

    Article  CAS  Google Scholar 

  3. Baylor, D. A. Invest Opthalmol. Vis. Sci. 28, 34–49 (1987).

    CAS  Google Scholar 

  4. Krishnan, N., Fletcher, R. T., Chader, G. J. & Krishna, G. Biochim Biophys. Acta 523, 506–515 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Fleischman, D. & Denisevich, M. Biochemistry 18, 5060–5066 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Fleischman, D., Denisevich, M., Raveed, D. & Pannbacker, R. G. Biochim. Biophys. Acta 630, 176–186 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Yau, K.-W. & Nakatani, K. Nature 313, 579–582 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. McNaughton, P. A., Cervetto, L. & Nunn, B. J. Nature 322, 261–263 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Miller, D. L. & Korenbrot, J. I. J. gen. Physiol. 90, 397–425 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Lamb, T. D., Matthews, H. R. & Torre, V. J. Physiol. 372, 315–349 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hodgkin, A. L., McNaughton, P. A. & Nunn, B. J. J. Physiol. 358, 447–468 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kondo, H. & Miller, W. H. Proc. natn. Acad. Sci. U.S.A. 85, 1322–1326 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Lipton, S. A. & Dowling, J. E. Curr. Top. Membranes Tramp. 15, 381–392 (1981).

    Article  CAS  Google Scholar 

  14. Woodruff, M. L. & Fain, G. L. J. gen. Physiol. 80, 537–555 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Kilbride, P. J. gen. Physiol. 75, 457–465 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lolley, R. N. & Racz, E. Vision Res. 22, 1481–1486 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Pepe, I. M., Panfoli, I. & Cugnoli, C. FEBS Lett. 203, 73–76 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Nakatani, K. & Yau, K.-W. J. Physiol. 395, 695–729 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Korenbrot, J. I. & Miller, D. L. Neurosci. Res. Suppl. 4, S11–S34 (1986).

  20. Schnetkamp, P. P. M. J. Physiol. 373, 25–45 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ames, A. III et al. J. biol. Chem. 261, 13034–13042 (1986).

    CAS  PubMed  Google Scholar 

  22. Hodgkin, A. L. in Proc. First Retina Research Foundation Symp. (Portfolio, Woodlands Texas, in the press).

  23. Robinson, P. R., Kawamura, S., Abramson, B. & Bownds, M. D. J. gen. Physiol. 76, 631–645 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Kawamura, S. & Bownds, M. D. J. gen. Physiol. 77, 571–591 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  26. Reysz, L. J., Carroll, A. G. & Jarrett, H. W. Analyt. Biochem. 166, 107–112 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, KW., Stryer, L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334, 64–66 (1988). https://doi.org/10.1038/334064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing