Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale bipolar wind in M82

Abstract

In 1963 it was reported1 that an enormous explosion (1055 erg) had occurred about one million years ago in the nuclear region of the nearby irregular galaxy M82. Deep photographic plates showed a spectacular filamentary system extending to 200 arc s (3 kpc) along the minor axis of the galaxy and Hα spectroscopy revealed a steep velocity gradient in this direction, suggesting expulsion of the ionized gas from the core of the galaxy1,2. Thereafter, broadband polarimetry showed the filaments to be linearly polarized (15–30%) at optical wavelengths, with electric vectors generally perpendicular to the radius vector from the centre3,4, indicating that the light has been scattered by particles into our line of sight5. The explosion hypothesis6 was questionable in that the observed blueshifts and redshifts cannot arise from explusion or infall, as the particles would scatter only redshifted or blueshifted light respectively on both sides of the galaxy. Although the nature of M82 remains a mystery, two significant observations have been largely overlooked. From imaging polarimetry, Schmidt et al7. demonstrated that most of the visual polarized flux arises from a smooth component which is symmetric over the main body of the galaxy. Axon and Taylor found well organized Hα line-splitting over 60 arc s at two long-slit positions south of the galaxy and parallel to the major axis8. Here we present new imaging Fabry–Perot observations of M82 for the Hα and [N II] λ6,583 spectral lines9. Our observations show for the first time that the line and continuum emission above and below the galactic disk arise from two morphologically and kinematically distinct components. The first component consists of filamentary, narrow-line emission (full width at half maximum, FWHM <200 km s−1) organized into a bipolar outflow over the surfaces of two elongated bubbles. We present direct evidence for a second component of broad-line (at FWHM 300 km s−1) and continuum emission arising from a faint exponential halo that rotates slowly with the disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lynds, C. R. & Sandage, A. R. Astrophys. J. 137, 1005–1021 (1963).

    Article  ADS  Google Scholar 

  2. Burbidge, E. M., Burbidge, G. R. & Rubin, V. C. Astrophys. J. 140, 942–968 (1964).

    Article  ADS  Google Scholar 

  3. Elvius, A. Lowell Obs. Bull. 5, 281–294 (1963).

    ADS  Google Scholar 

  4. Sandage, A. R. & Miller, W. C. Science 144, 405–409 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Solinger, A. B. Astrophys. J. 155, 403–415 (1969).

    Article  ADS  Google Scholar 

  6. Sanders, R. H. & Balamore, D. S. Astrophys. J. 166, 7–12 (1971).

    Article  ADS  CAS  Google Scholar 

  7. Schmidt, G. D., Angel, J. R. P. & Cromwell, R. H. Astrophys. J. 206, 888–897 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Axon, D. J. & Taylor, K. Nature 274, 37–38 (1978).

    Article  ADS  Google Scholar 

  9. Bland, J. & Tully, R. B. Bull. Am. astr. Soc. 19, 637 (1986).

    ADS  Google Scholar 

  10. Osterbrock, D. E. Astrophysics of Gaseous Nebulae 156 and 163 (Freeman, New York, 1974).

    Google Scholar 

  11. Wyckoff, S., Wehinger, P. A., Fosbury, R. A. E. & McMullan, D. Astrophys. J. 206, 254–256 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Watson, M. G., Stanger, V. & Griffiths, R. E. Astrophys. J. 286, 144–158 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Kronberg, P. P., Biermann, P. & Schwab, F. R. Astrophys. J. 291, 693–707 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Lo, K. Y. et al. Astrophys. J. 312, 574–591 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Nakai, N. et al. Proc. astr. Soc. Japan (in the press).

  16. Bingham, R. G. et al. Nature 259, 463–465 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Sandage, A. & Visvanathan, N. Astrophys. J. 157, 1065–1074 (1969).

    Article  ADS  Google Scholar 

  18. Visvanathan, N. & Sandage, A. Astrophys. J. 176, 57–74 (1972).

    Article  ADS  Google Scholar 

  19. Visvanathan, N. Astrophys. J. 192, 319–324 (1974).

    Article  ADS  Google Scholar 

  20. Rieke, G. H., Lebofsky, M. J., Thompson, R. I., Low, F. J. & Tokunaga, A. T. Astrophys. J. 238, 24–40 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Telesco, C. M. & Harper, D. A. Astrophys. J. 235, 392–404 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Kronberg, P. P. & Sramek, R. A. Science 227, 28–31 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Chevalier, R. A. & Clegg, A. W. Nature 317, 44–45 (1985).

    Article  ADS  Google Scholar 

  24. O'Connell, R. W. & Mangano, J. J. Astrophys. J. 221, 62–79 (1978).

    Article  ADS  CAS  Google Scholar 

  25. McCarthy, P. J., Heckman, T. & van Bruegel, W. Astr. J. 92, 264–275 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bland, J., Tully, R. Large-scale bipolar wind in M82. Nature 334, 43–45 (1988). https://doi.org/10.1038/334043a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334043a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing