Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deposition of ungraded muds from high-density non-turbulent turbidity currents

Abstract

Turbidity current deposits of mud have recently been found up to 10m in thickness resulting from single depositional events1,2. Turbidites 1–5 m thick from the Madeira Abyssal Plain3,4 display long segments with little vertical change of grain size5,6. This suggests that the currents 'froze' in some way, making them unable to sort sediment. Here we suggest that a decline in flow speed of these currents led to a concentration gradient in silt close to the bed that was sufficiently steep to stratify the flow. A concentration gradient of 18 kg m–3 over 1.5 m height gives a layer Richardson number above the critical value of 0.25 for damping of turbulence. We propose that, with turbulence severely damped, a dense suspension of fine material consolidates like a static suspension while continuing to flow downslope. The current changes from a fully turbulent flow to a decelerating flow with suppressed turbulence and increasing density. In the latter state interparticle forces prevent differential settling of the coarser grains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blanpied, C. & Stanley, D. J. Smithson. Contribs. mar. Sci. 13, 1–40 (1981).

    Google Scholar 

  2. Cita, M. B. et al. Mar. Geol. 55, 79–102 (1984).

    Article  ADS  Google Scholar 

  3. Weaver, P. P. E., Searle, R. C. & Kuijpers, A. Spec. Publs geol. Soc. Land. 21, 131–143 (1986).

    Article  Google Scholar 

  4. Weaver, P. P. E. & Rothwell, R. G. Spec. Publs geol. Soc. Lond. 31, 71–86 (1987).

    Article  ADS  Google Scholar 

  5. Hieke, W. Mar. Geol. 55, 63–78 (1984).

    Article  ADS  Google Scholar 

  6. Jones, K. P. N., McCave, I. N. & Patel, P. D. Sedimentology 35, 163–172 (1988).

    Article  ADS  Google Scholar 

  7. Stow, D. A. V. & Bowen, A. J. Sedimentology 27, 31–46 (1980).

    Article  ADS  Google Scholar 

  8. McCave, I. N. & Swift, S. A. Bull. geol. Soc. Am. 87, 541–546 (1976).

    Article  Google Scholar 

  9. Stanley, D. J. Geo-mar. Lett. 1, 77–83 (1981).

    Article  ADS  Google Scholar 

  10. Been, K. & Sills, G. C. Géotechnique 71, 519–535 (1981).

    Article  Google Scholar 

  11. Allen, G. P. thesis, Univ. Bordeaux (1972).

  12. Kirby, R. & Parker, W. R. Can. J. Fish. Aquat. Sci. 40 (suppl. 1), 83–95 (1983).

    Article  Google Scholar 

  13. Parker, W. R. Continental Shelf Res. 7, 1285–1293 (1986).

    Article  ADS  Google Scholar 

  14. Wells, J. T. Can. J. Fish. Aquat. Sci. 40 (suppl. 1), 130–142 (1983).

    Article  Google Scholar 

  15. Stein, R. J. sedim. Petrol. 55, 590–593 (1985).

    Article  Google Scholar 

  16. Hunter, R. J. Adv. Coll. Interface Sci. 17, 197–211 (1982).

    Article  CAS  Google Scholar 

  17. Williams, D. J. A. in Estuarine Cohesive Sediment Dynamics (ed. Mehta, A. J.) 110–125 (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  18. Komar, P. D. In The Sea Vol. 6 (Marine Modelling) (eds Goldberg, E. D. et al) 603–621 (Wiley, New York, 1977).

    Google Scholar 

  19. Woodcock, C. R. & Mason, J. S. Bulk Solids Handling, 128–150 (L. Hill, Glasgow & London, 1987).

    Book  Google Scholar 

  20. Wang, M., Zhan, Y., Liu, J., Duan, W. & Wu, W. In Proc. 2nd Int. Symp. River Sedimentation 45–53 (Water Resources and Electrical Power Press, Nanjing, 1983).

    Google Scholar 

  21. Hunt, J. R. in Estuarine Cohesive Sediment Dynamics (ed. Mehta, A. J.) 85–109 (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  22. McCave, I. N. Spec. Publs geol. Soc. Lond. 14, 35–69 (1984).

    Article  Google Scholar 

  23. Simpson, J. E. A. Rev. Fluid, Mech. 14, 213–234 (1982).

    Article  ADS  Google Scholar 

  24. Turner, J. S. Buoyancy Effects in Fluids (Cambridge University Press, 1973).

    Book  Google Scholar 

  25. van Rijn, L. C. J. hydraul. Engng. 110, 1613–1641.

  26. Smith, J. D. in The Sea Vol. 6 (Marine Modelling) (eds Goldberg, E. D. et al.), 539–577 (Wiley, New York, 1977).

    Google Scholar 

  27. Sinclair, C. G. in Interaction Between Fluids and Particles 78–86 (Inst. Chem. Engrs., London, 1962).

    Google Scholar 

  28. Pierson, T. C. & Costa, J. E. Rev. Engng. Geol. 7, 1–12 (1987).

    Article  Google Scholar 

  29. Stow, D. A. V. & Piper, J. D. W. Fine Grained Sediments: Deep Water Processes and Facies. Spec. Publs geol. Soc. Lond. 15, 659 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCave, I., Jones, K. Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature 333, 250–252 (1988). https://doi.org/10.1038/333250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333250a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing